YOLO v1各種コマンド - KentaKawamata/Learning-data-tools GitHub Wiki

重みの認識精度を確認する

./darknet yolo recall cfg/tiny-yolo_2class.cfg results/tiny-yolo_2class_final.weights

なおここでは,voc.2007.testdata/ディレクトリに用意する必要がある.

voc.2007.testの内容は事前にprocess.pyで作成したtest.textをコピー.

結果

0: Convolutional Layer: 448 x 448 x 3 image, 16 filters -> 448 x 448 x 16 image
1: Maxpool Layer: 448 x 448 x 16 image, 2 size, 2 stride
2: Convolutional Layer: 224 x 224 x 16 image, 32 filters -> 224 x 224 x 32 image
3: Maxpool Layer: 224 x 224 x 32 image, 2 size, 2 stride
4: Convolutional Layer: 112 x 112 x 32 image, 64 filters -> 112 x 112 x 64 image
5: Maxpool Layer: 112 x 112 x 64 image, 2 size, 2 stride
6: Convolutional Layer: 56 x 56 x 64 image, 128 filters -> 56 x 56 x 128 image
7: Maxpool Layer: 56 x 56 x 128 image, 2 size, 2 stride
8: Convolutional Layer: 28 x 28 x 128 image, 256 filters -> 28 x 28 x 256 image
9: Maxpool Layer: 28 x 28 x 256 image, 2 size, 2 stride
10: Convolutional Layer: 14 x 14 x 256 image, 512 filters -> 14 x 14 x 512 image
11: Maxpool Layer: 14 x 14 x 512 image, 2 size, 2 stride
12: Convolutional Layer: 7 x 7 x 512 image, 1024 filters -> 7 x 7 x 1024 image
13: Convolutional Layer: 7 x 7 x 1024 image, 256 filters -> 7 x 7 x 256 image
14: Connected Layer: 12544 inputs, 588 outputs
15: Detection Layer
forced: Using default '0'
Loading weights from results/tiny-yolo_2class_final.weights...Done!
Learning Rate: 0.0005, Momentum: 0.9, Decay: 0.0005
    0     3     3	RPs/Img: 40.00	IOU: 88.34%	Recall:100.00%
    1     6     6	RPs/Img: 42.50	IOU: 84.32%	Recall:100.00%
    2     8     9	RPs/Img: 42.67	IOU: 76.69%	Recall:88.89%
    3    11    12	RPs/Img: 45.00	IOU: 75.65%	Recall:91.67%
    4    14    15	RPs/Img: 47.20	IOU: 77.61%	Recall:93.33%
    5    16    18	RPs/Img: 47.67	IOU: 74.44%	Recall:88.89%
    6    19    21	RPs/Img: 46.86	IOU: 74.67%	Recall:90.48%
    7    21    23	RPs/Img: 45.88	IOU: 75.22%	Recall:91.30%
    8    24    26	RPs/Img: 45.67	IOU: 76.47%	Recall:92.31%
    9    25    27	RPs/Img: 46.20	IOU: 77.02%	Recall:92.59%
   10    28    30	RPs/Img: 46.09	IOU: 77.45%	Recall:93.33%
   11    31    33	RPs/Img: 45.42	IOU: 77.20%	Recall:93.94%
   12    34    36	RPs/Img: 45.77	IOU: 78.07%	Recall:94.44%
   13    37    39	RPs/Img: 45.57	IOU: 78.14%	Recall:94.87%
   14    40    42	RPs/Img: 45.13	IOU: 78.40%	Recall:95.24%
   15    43    45	RPs/Img: 45.12	IOU: 77.62%	Recall:95.56%
   16    46    48	RPs/Img: 45.29	IOU: 77.84%	Recall:95.83%
   17    49    51	RPs/Img: 44.50	IOU: 78.26%	Recall:96.08%
   18    52    54	RPs/Img: 44.79	IOU: 78.39%	Recall:96.30%
   19    54    56	RPs/Img: 44.95	IOU: 78.55%	Recall:96.43%
   20    57    59	RPs/Img: 44.76	IOU: 79.13%	Recall:96.61%
   21    60    62	RPs/Img: 44.68	IOU: 78.80%	Recall:96.77%
   22    63    65	RPs/Img: 44.52	IOU: 78.33%	Recall:96.92%
   23    66    68	RPs/Img: 43.92	IOU: 77.96%	Recall:97.06%
   24    69    71	RPs/Img: 44.32	IOU: 78.50%	Recall:97.18%
   25    72    74	RPs/Img: 44.08	IOU: 79.04%	Recall:97.30%
   26    75    77	RPs/Img: 44.26	IOU: 79.46%	Recall:97.40%
   27    77    79	RPs/Img: 44.14	IOU: 79.48%	Recall:97.47%
   28    80    82	RPs/Img: 44.21	IOU: 79.80%	Recall:97.56%
   29    83    85	RPs/Img: 44.50	IOU: 79.87%	Recall:97.65%
   30    86    88	RPs/Img: 44.58	IOU: 79.67%	Recall:97.73%
   31    86    89	RPs/Img: 44.75	IOU: 79.08%	Recall:96.63%
   32    87    90	RPs/Img: 44.79	IOU: 79.26%	Recall:96.67%

RPs/Img

IOU(Intersection Over Union)

学習の成功を評価する評価関数には報酬関数にはIoU(Intersection-over-Union)を用いる. IoUは, boxであるb(box)に対して, 目的となる領域g(ground truth box)がどれだけ含まれているかを見る.

IoUを用いて, 状態sにおいて行動aを行って状態s′に遷移する時の報酬関数Rは, 以下のように定義されます.

ある状態のIoUから次の状態へのIoUの差. またこの値は正負がbinaryで制御される. sign() ... 符号関数

閾値τを超えていれば+η, 無ければ−ηの報酬. η,τは経験則によるものが大きく, τは過大だとなかなか達成できない.

Recall

認識精度