Cc.x Circuits exercise - JulTob/Mathematics GitHub Wiki

OpAmp

El circuito siguiente representa una fuente de corriente controlada por tensión. Obtenga el valor de la corriente Io en función de la tensión V1 y de las resistencias. ¿Depende la corriente del valor de la carga RL?

---
config:
  look: handDrawn
  theme: dark

---

flowchart TD
    V1@{ shape: circle, label: "V1🔋" }
    style V1 fill:#080,stroke:#050,stroke-width:4px
    R2@{ shape: rect, label: "2·R 💡💡" }
    style R2 fill:#07F,stroke:#037,stroke-width:4px
    V1 o--o|Ⓐ| R2
    linkStyle 0 stroke: #0F0, stroke-width:4px
    N1@{ shape: circ, label: "🔆Ⓑ" }
    style N1 fill:#046,stroke:#09E,stroke-width:4px
    R2 o--o N1
    linkStyle 1 stroke: #0AD, stroke-width:4px
    R01@{ shape: rect, label: "R💡" }
    style R01 fill:#0AB,stroke:#055,stroke-width:4px
    N1 o--o R01
    linkStyle 2 stroke: #0E9, stroke-width:4px
    OP@{ shape: flip-tri, label: "OP" }
    style OP fill:#0b7,stroke:#053,stroke-width:4px
    N1 o--o|"-"| OP
    linkStyle 3 stroke: #0F8, stroke-width:4px
    N2@{ shape: circ, label: "🔆" }
    style N2 fill:#303,stroke:#707,stroke-width:4px
    R01 o--o|Ⓒ| N2
    linkStyle 4 stroke: #272, stroke-width:4px
    OP  o--o N2
    linkStyle 5 stroke: #170, stroke-width:4px
    GR@{ shape: trap-t, label: "Ground🪫" }
    style GR fill:#951,stroke:#103,stroke-width:4px
    R20@{ shape: rect, label: "2·R 💡💡" }
    style R20 fill:#07F,stroke:#037,stroke-width:4px
    R20 o--o|Ⓕ| GR
    linkStyle 6 stroke: #17F, stroke-width:4px
    R02@{ shape: rect, label: "R💡" }
    style R02 fill:#0AB,stroke:#055,stroke-width:4px
    R02 o--o|Ⓓ| N2
    linkStyle 7 stroke: #18E, stroke-width:4px
    N3@{ shape: circ, label: "🔆Ⓔ" }
    style N3 fill:#330,stroke:#770,stroke-width:4px
    N3 o--o R20
    linkStyle 8 stroke: #19D, stroke-width:4px
    N3 o--o|"+"| OP
    linkStyle 9 stroke: #1AC, stroke-width:4px
    N3 o--o R02
    linkStyle 10 stroke: #1BB, stroke-width:4px
    V2@{ shape: circle, label: "V0📡" }
    style V2 fill:#800,stroke:#500,stroke-width:4px
    N2 o--o V2
    linkStyle 11 stroke: #804, stroke-width:4px
    RL@{ shape: lin-rect, label: "RL 🔌" }
    style RL fill:#666,stroke:#333,stroke-width:4px
    N3 o----o RL
    linkStyle 12 stroke: #23A, stroke-width:4px
    GR2@{ shape: trap-t, label: "Gr🪫" }
    style GR2 fill:#951,stroke:#103,stroke-width:4px
    RL o--o|Ⓖ| GR2
    linkStyle 13 stroke: #897, stroke-width:4px

  %% Force straight lines
  linkStyle default interpolate basis;

Loading
  • Con realimentación negativa $>> ccv$

    • $v+ = v- = V_x$
    • i+ = i- = 0
  • $① 🟠IⒶⒷ = 🟡IⒷⒸ$

  • $② 🟡IⒹⒺ = 🟠IⒺⒻ + 🔵IⒺⒼ$

  • $③ 🔵IⒺⒼ = I₀ = \frac{V_x}{R_L}$

  • $①→④ 🟠\frac{(V₁-V_x)}{2R} = 🟡\frac{(V_x-V₀)}{R}$

    • $④ V₁+2·V₀ = 3·V_x$
  • $②→⑤ 🟡\frac{(V₀-V_x)}{R} = 🟠\frac{V_x}{2R} + 🔵\frac{V_x}{R_L}$

    • $V₀ = V_x + (\frac{V_x}{2}) + V_x(\frac{R}{R_L})$
  • $④&⑤→⑥ V₁ + 2·(V_x + (V_x:2) + V_x(R:R_L)) = 3·V_x$

    • $⑥ V₁ = V_x ( 3 - 2 - 1 - (2R:R_L) )$
    • $⑥ V₁ = V_x ( -2R : R_L )$
  • $③ 🔵 I₀ = V₁(R_L:(-2R)):R_L = V₁(1:(-2R)) = - V₁:2R$

  • No depende de RL
  • Fuente de corriente independiente de la resistencia de carga

Acople magnético

Plantee las ecuaciones de malla en términos de las corrientes de malla I1, I2 en el siguiente circuito. Especifique el valor de las tensiones en las bobinas en función de las mismas corrientes I1, I2. DATOS: Vs= 180 ∟0° (V); M=4H; L1 =5H; L2 =6H; R=10 Ω; C=1mF; 𝜔=20rad/s

---
config:
  look: handDrawn
  theme: dark
---
graph LR;
    L1@{ shape: cyl, label: "💈L1" }
    style L1 fill:#406,stroke:#90E,stroke-width:4px
    L2@{ shape: cyl, label: "💈L2" }
    style L2 fill:#604,stroke:#E09,stroke-width:4px

    N1@{ shape: circ, label: "🔆" }
    style N1 fill:#000,stroke:#444,stroke-width:2px
    N2@{ shape: circ, label: "🔆" }
    style N2 fill:#000,stroke:#444,stroke-width:2px

    C1@{ shape: procs, label: "C1 ⏳" }
    style C1 fill:#055,stroke:#0AA,stroke-width:4px

    R@{ shape: rect, label: "R💡" }
    style R fill:#500,stroke:#A00,stroke-width:4px

  A[Battery 🔋∿Vs🔋] --o |<span style='color:orange;'>I1+I2</span>| L1  
  linkStyle 0 stroke: orange, stroke-width:8px
  L1 o--o N1
  L1 o-.-o |<span style='color:pink;'>🧲M🧲</span>| L2  

  linkStyle 1 stroke: orange, stroke-width:8px
  linkStyle 2 stroke: pink, stroke-width:6px
  N1 o--o |<span style='color:yellow;'>I2</span>|R
  linkStyle 3 stroke: yellow, stroke-width:4px
  N1 o--o |<span style='color:red;'>I1</span>|L2
  linkStyle 4 stroke: red, stroke-width:4px

  L2 o--o C1
  linkStyle 5 stroke: red, stroke-width:4px
  N2 o--o C1
  linkStyle 6 stroke: red, stroke-width:4px
  A o--o N2
  linkStyle 7 stroke: orange, stroke-width:4px
  N2 o--o R
  linkStyle 8 stroke: yellow, stroke-width:4px

  classDef source fill:#500,stroke:#ff0000,stroke-width:2px;
  class A source;




Loading
  • $VL_1 = 𝚒·𝜔·L_1·𝕀₁ - 𝚒·𝜔·M·𝕀₂$
    • $= 𝚒·100·𝕀₁ - 𝚒·80·𝕀₂$
  • $VL_2 = 𝚒·𝜔·L_2·𝕀₂ - 𝚒·𝜔·M·𝕀₁$
    • $= 𝚒·120·𝕀₂ - 𝚒·80·𝕀₁$
  • Malla 1: $-V_s + V_{L_1} + V_R = 0$
    • $-V_s + (𝚒·100·𝕀₁ - 𝚒·80·𝕀₂) + (R(𝕀₁ - 𝕀₂)) = 0$
    • 🟢 $180 = (𝚒·100+10)𝕀₁ + (-10 - 𝚒·80)𝕀₂$
  • $Malla 2: -R(𝕀₁-𝕀₂) + V_{L_2} + V_c = 0$
    • $-10(𝕀₁-𝕀₂) + (𝚒·120·𝕀₂ - 𝚒·80·𝕀₁) + 𝕀₂·Z_c = 0$
    • $-10𝕀₁ + 10𝕀₂ + 𝚒·120·𝕀₂ - 𝚒·80·𝕀₁ - 50·𝕀₂ = 0$
    • 🟢 $(-10 - 𝚒·80)𝕀₁ + (10+70𝚒)𝕀₂ =0$

Estado Transitorio

El circuito mostrado ha estado durante mucho tiempo con el interruptor en la posición A. En el instante t=0, el interruptor pasa a la posición B. Calcular como evoluciona la tensión en bornes del condensador Vc(t) para t ≥0.

  • R= 10kΩ

  • C= 1 μF

---
config:
  look: handDrawn
  theme: dark
---

graph TD;
  Vs@{ shape: loop-limit, label: "🔋12V🔋" }
  R1@{ shape: stadium, label: "💡R" }
  Sw@{ shape: diamond, label: "Switch 🕹️" }
  R2@{ shape: stadium, label: "💡2R💡" }
  NA@{ shape: circ, label: "🔆" }
  R3@{ shape: stadium, label: "💡R" }
  C@{ shape: processes, label: "C(Vc)" }
  Gr@{ shape: trap-t, label: "🔌Ground🔌" }

  classDef Node fill:#555,stroke:#AAA,stroke-width:2px;
  classDef source fill:#500,stroke:#f00,stroke-width:2px;
  classDef resistance fill:#005,stroke:#00A,stroke-width:2px;
  classDef switch fill:#050,stroke:#0A0,stroke-width:2px;
  classDef cond fill:#055,stroke:#0AA,stroke-width:2px;
  classDef ground fill:#550,stroke:#AA0,stroke-width:2px;
  class Vs source;
  class R1,R2,R3 resistance;
  class Sw switch;
  class NA Node;
  class Gr ground;
  class C cond;

  Vs o---o R1
  R1 o----o Sw
  Sw o-.-o|t<0| R2 
  Sw o-.-o|t>0| NA 
  R2 o---o NA
  NA o---o R3 
  R3 o---o Gr
  NA o---o C 
  C o---o Gr

  linkStyle default stroke: gold, stroke-width:4px


Loading
  • si $t⟶∞$:
    • C es un abierto
    • $V_c(∞)= I·R/2 = (12:R)(R:2)= 6[V]$
  • $s = -1:(Req·C)= -1:5k·Ⅹ(-6) = -Ⅹ(3):5 = -200 [s̈]$

$V_c(t) = V_c(∞) + [V_c(0) - V_c(∞)] · e(st)$ $V_c(t) = 6 + [3-6]· e(-200t)$ $V_c(t) = 6 + -3·e(-200t) [V]$

⚠️ **GitHub.com Fallback** ⚠️