Cc.x Circuits exercise - JulTob/Mathematics GitHub Wiki
El circuito siguiente representa una fuente de corriente controlada por tensión. Obtenga el valor de la corriente Io en función de la tensión V1 y de las resistencias. ¿Depende la corriente del valor de la carga RL?
---
config:
look: handDrawn
theme: dark
---
flowchart TD
V1@{ shape: circle, label: "V1🔋" }
style V1 fill:#080,stroke:#050,stroke-width:4px
R2@{ shape: rect, label: "2·R 💡💡" }
style R2 fill:#07F,stroke:#037,stroke-width:4px
V1 o--o|Ⓐ| R2
linkStyle 0 stroke: #0F0, stroke-width:4px
N1@{ shape: circ, label: "🔆Ⓑ" }
style N1 fill:#046,stroke:#09E,stroke-width:4px
R2 o--o N1
linkStyle 1 stroke: #0AD, stroke-width:4px
R01@{ shape: rect, label: "R💡" }
style R01 fill:#0AB,stroke:#055,stroke-width:4px
N1 o--o R01
linkStyle 2 stroke: #0E9, stroke-width:4px
OP@{ shape: flip-tri, label: "OP" }
style OP fill:#0b7,stroke:#053,stroke-width:4px
N1 o--o|"-"| OP
linkStyle 3 stroke: #0F8, stroke-width:4px
N2@{ shape: circ, label: "🔆" }
style N2 fill:#303,stroke:#707,stroke-width:4px
R01 o--o|Ⓒ| N2
linkStyle 4 stroke: #272, stroke-width:4px
OP o--o N2
linkStyle 5 stroke: #170, stroke-width:4px
GR@{ shape: trap-t, label: "Ground🪫" }
style GR fill:#951,stroke:#103,stroke-width:4px
R20@{ shape: rect, label: "2·R 💡💡" }
style R20 fill:#07F,stroke:#037,stroke-width:4px
R20 o--o|Ⓕ| GR
linkStyle 6 stroke: #17F, stroke-width:4px
R02@{ shape: rect, label: "R💡" }
style R02 fill:#0AB,stroke:#055,stroke-width:4px
R02 o--o|Ⓓ| N2
linkStyle 7 stroke: #18E, stroke-width:4px
N3@{ shape: circ, label: "🔆Ⓔ" }
style N3 fill:#330,stroke:#770,stroke-width:4px
N3 o--o R20
linkStyle 8 stroke: #19D, stroke-width:4px
N3 o--o|"+"| OP
linkStyle 9 stroke: #1AC, stroke-width:4px
N3 o--o R02
linkStyle 10 stroke: #1BB, stroke-width:4px
V2@{ shape: circle, label: "V0📡" }
style V2 fill:#800,stroke:#500,stroke-width:4px
N2 o--o V2
linkStyle 11 stroke: #804, stroke-width:4px
RL@{ shape: lin-rect, label: "RL 🔌" }
style RL fill:#666,stroke:#333,stroke-width:4px
N3 o----o RL
linkStyle 12 stroke: #23A, stroke-width:4px
GR2@{ shape: trap-t, label: "Gr🪫" }
style GR2 fill:#951,stroke:#103,stroke-width:4px
RL o--o|Ⓖ| GR2
linkStyle 13 stroke: #897, stroke-width:4px
%% Force straight lines
linkStyle default interpolate basis;
-
Con realimentación negativa
$>> ccv$ $v+ = v- = V_x$ - i+ = i- = 0
-
$① 🟠IⒶⒷ = 🟡IⒷⒸ$ -
$② 🟡IⒹⒺ = 🟠IⒺⒻ + 🔵IⒺⒼ$ -
$③ 🔵IⒺⒼ = I₀ = \frac{V_x}{R_L}$ -
$①→④ 🟠\frac{(V₁-V_x)}{2R} = 🟡\frac{(V_x-V₀)}{R}$ $④ V₁+2·V₀ = 3·V_x$
-
$②→⑤ 🟡\frac{(V₀-V_x)}{R} = 🟠\frac{V_x}{2R} + 🔵\frac{V_x}{R_L}$ - ⑤
$V₀ = V_x + (\frac{V_x}{2}) + V_x(\frac{R}{R_L})$
- ⑤
-
$④&⑤→⑥ V₁ + 2·(V_x + (V_x:2) + V_x(R:R_L)) = 3·V_x$ $⑥ V₁ = V_x ( 3 - 2 - 1 - (2R:R_L) )$ $⑥ V₁ = V_x ( -2R : R_L )$
-
$③ 🔵 I₀ = V₁(R_L:(-2R)):R_L = V₁(1:(-2R)) = - V₁:2R$
- No depende de RL
- Fuente de corriente independiente de la resistencia de carga
Plantee las ecuaciones de malla en términos de las corrientes de malla I1, I2 en el siguiente circuito. Especifique el valor de las tensiones en las bobinas en función de las mismas corrientes I1, I2. DATOS: Vs= 180 ∟0° (V); M=4H; L1 =5H; L2 =6H; R=10 Ω; C=1mF; 𝜔=20rad/s
---
config:
look: handDrawn
theme: dark
---
graph LR;
L1@{ shape: cyl, label: "💈L1" }
style L1 fill:#406,stroke:#90E,stroke-width:4px
L2@{ shape: cyl, label: "💈L2" }
style L2 fill:#604,stroke:#E09,stroke-width:4px
N1@{ shape: circ, label: "🔆" }
style N1 fill:#000,stroke:#444,stroke-width:2px
N2@{ shape: circ, label: "🔆" }
style N2 fill:#000,stroke:#444,stroke-width:2px
C1@{ shape: procs, label: "C1 ⏳" }
style C1 fill:#055,stroke:#0AA,stroke-width:4px
R@{ shape: rect, label: "R💡" }
style R fill:#500,stroke:#A00,stroke-width:4px
A[Battery 🔋∿Vs🔋] --o |<span style='color:orange;'>I1+I2</span>| L1
linkStyle 0 stroke: orange, stroke-width:8px
L1 o--o N1
L1 o-.-o |<span style='color:pink;'>🧲M🧲</span>| L2
linkStyle 1 stroke: orange, stroke-width:8px
linkStyle 2 stroke: pink, stroke-width:6px
N1 o--o |<span style='color:yellow;'>I2</span>|R
linkStyle 3 stroke: yellow, stroke-width:4px
N1 o--o |<span style='color:red;'>I1</span>|L2
linkStyle 4 stroke: red, stroke-width:4px
L2 o--o C1
linkStyle 5 stroke: red, stroke-width:4px
N2 o--o C1
linkStyle 6 stroke: red, stroke-width:4px
A o--o N2
linkStyle 7 stroke: orange, stroke-width:4px
N2 o--o R
linkStyle 8 stroke: yellow, stroke-width:4px
classDef source fill:#500,stroke:#ff0000,stroke-width:2px;
class A source;
-
$VL_1 = 𝚒·𝜔·L_1·𝕀₁ - 𝚒·𝜔·M·𝕀₂$ $= 𝚒·100·𝕀₁ - 𝚒·80·𝕀₂$
-
$VL_2 = 𝚒·𝜔·L_2·𝕀₂ - 𝚒·𝜔·M·𝕀₁$ $= 𝚒·120·𝕀₂ - 𝚒·80·𝕀₁$
- Malla 1:
$-V_s + V_{L_1} + V_R = 0$ $-V_s + (𝚒·100·𝕀₁ - 𝚒·80·𝕀₂) + (R(𝕀₁ - 𝕀₂)) = 0$ - 🟢
$180 = (𝚒·100+10)𝕀₁ + (-10 - 𝚒·80)𝕀₂$
-
$Malla 2: -R(𝕀₁-𝕀₂) + V_{L_2} + V_c = 0$ $-10(𝕀₁-𝕀₂) + (𝚒·120·𝕀₂ - 𝚒·80·𝕀₁) + 𝕀₂·Z_c = 0$ $-10𝕀₁ + 10𝕀₂ + 𝚒·120·𝕀₂ - 𝚒·80·𝕀₁ - 50·𝕀₂ = 0$ - 🟢
$(-10 - 𝚒·80)𝕀₁ + (10+70𝚒)𝕀₂ =0$
El circuito mostrado ha estado durante mucho tiempo con el interruptor en la posición A. En el instante t=0, el interruptor pasa a la posición B. Calcular como evoluciona la tensión en bornes del condensador Vc(t) para t ≥0.
---
config:
look: handDrawn
theme: dark
---
graph TD;
Vs@{ shape: loop-limit, label: "🔋12V🔋" }
R1@{ shape: stadium, label: "💡R" }
Sw@{ shape: diamond, label: "Switch 🕹️" }
R2@{ shape: stadium, label: "💡2R💡" }
NA@{ shape: circ, label: "🔆" }
R3@{ shape: stadium, label: "💡R" }
C@{ shape: processes, label: "C(Vc)" }
Gr@{ shape: trap-t, label: "🔌Ground🔌" }
classDef Node fill:#555,stroke:#AAA,stroke-width:2px;
classDef source fill:#500,stroke:#f00,stroke-width:2px;
classDef resistance fill:#005,stroke:#00A,stroke-width:2px;
classDef switch fill:#050,stroke:#0A0,stroke-width:2px;
classDef cond fill:#055,stroke:#0AA,stroke-width:2px;
classDef ground fill:#550,stroke:#AA0,stroke-width:2px;
class Vs source;
class R1,R2,R3 resistance;
class Sw switch;
class NA Node;
class Gr ground;
class C cond;
Vs o---o R1
R1 o----o Sw
Sw o-.-o|t<0| R2
Sw o-.-o|t>0| NA
R2 o---o NA
NA o---o R3
R3 o---o Gr
NA o---o C
C o---o Gr
linkStyle default stroke: gold, stroke-width:4px
- si
$t⟶∞$ :- C es un abierto
$V_c(∞)= I·R/2 = (12:R)(R:2)= 6[V]$
$s = -1:(Req·C)= -1:5k·Ⅹ(-6) = -Ⅹ(3):5 = -200 [s̈]$