69. Integrales - JulTob/Mathematics GitHub Wiki

Integrals

Integrals determine the cumulative of something.

\color{#48cae4}
position = \int_{t_0}^{t_f} velocityโ € โˆ‚time + P_โ‚€

Simplification

{\color{tomato}k} \int_{\color{tomato}ka}^{\color{tomato}kb} s(x) dx =  \int_{a}^{b} s({\color{tomato}k}x) dx

Integrales inmediatas

\int x^{\color{gold}n} = \frac{x^{\color{gold}n+1}}{\color{gold}n+1}  {\color{tomato} + ๐™ฒ}
\int {\color{gold}\frac{1}{x}} = \int {\color{gold}\ddot{x}} = {\color{gold} ๐™ป๐š—\left | x \right | } {\color{tomato} + ๐™ฒ}
\int {\color{gold}โ„ฎ^x} = {\color{gold}โ„ฎ^x} {\color{tomato} + ๐™ฒ}
\int {\color{gold}๐’‚^x} = {\color{gold} \frac{๐’‚^x}{๐™ป๐š—๐’‚}} {\color{tomato} + ๐™ฒ}
\int {\color{gold}cos๐‘ฅ} = {\color{gold} sin๐‘ฅ} {\color{tomato} + ๐™ฒ}
\int {\color{gold}sin๐‘ฅ} = {\color{gold} -cos๐‘ฅ} {\color{tomato} + ๐™ฒ}
\int \frac{1}{1+x^2} = arctan(๐‘ฅ)   {\color{tomato} + ๐™ฒ}
\int \frac{1}{\sqrt{1+x^2}} = arcsin(๐‘ฅ)  {\color{tomato} + ๐™ฒ}
\int \frac{1}{cos^2x} = tan(๐‘ฅ)   {\color{tomato} + ๐™ฒ}
\int \frac{1}{sin^2x} = -cotan(๐‘ฅ)   {\color{tomato} + ๐™ฒ}
\int \frac{1}{\sqrt{1+x^2}} = ๐™ป๐š—(๐‘ฅ + \sqrt{1+x^2})   {\color{tomato} + ๐™ฒ}
\int \frac{1}{\sqrt{๐‘ฅยฒ-1}} = ๐™ป๐š—(๐‘ฅ+ \sqrt{๐‘ฅยฒ-1})   {\color{tomato} + ๐™ฒ}

โˆซ๐‘“(๐‘”(๐‘ฅ))๐‘”'(๐‘ฅ)d๐‘ฅ = ๐น(๐‘”(๐‘ฅ)) \text{, si } โˆซ๐‘“(๐‘ฅ)d๐‘ฅ = ๐น(๐‘ฅ)

โˆซ๐‘ขd๐‘ฃ = ๐‘ข๐‘ฃ - โˆซ๐‘ฃd๐‘ข
๐‘ข=๐‘“  d๐‘ฃ= ๐‘” d๐‘ฅ

Inversal Integration

\int_0^p f(x) \, dx = {\color{orange}p f(p)} 
{\color{gold} - \int_0^p f^{-1}(f(x)) f'(x) \, dx }
โˆซ^p f(x) = {\color{orange} pยทf(p)} 
{\color{gold} - \int^{f(p)} f^{-1}(f) df(x) }

This formula breaks down as follows:

  1. ๐ŸŸ  $( p f(p) )$ The rectangle approximation.
  2. ๐ŸŸก $( \int_0^p f^{-1}(f(x)) f'(x) , dx )$ : The correction term that accounts for the curvature of $( f(x) )$ .

101 Integrals