69. Integrales - JulTob/Mathematics GitHub Wiki
Integrals
Integrals determine the cumulative of something.
\color{#48cae4}
position = \int_{t_0}^{t_f} velocityโ โtime + P_โ
Simplification
{\color{tomato}k} \int_{\color{tomato}ka}^{\color{tomato}kb} s(x) dx = \int_{a}^{b} s({\color{tomato}k}x) dx
Integrales inmediatas
\int x^{\color{gold}n} = \frac{x^{\color{gold}n+1}}{\color{gold}n+1} {\color{tomato} + ๐ฒ}
\int {\color{gold}\frac{1}{x}} = \int {\color{gold}\ddot{x}} = {\color{gold} ๐ป๐\left | x \right | } {\color{tomato} + ๐ฒ}
\int {\color{gold}โฎ^x} = {\color{gold}โฎ^x} {\color{tomato} + ๐ฒ}
\int {\color{gold}๐^x} = {\color{gold} \frac{๐^x}{๐ป๐๐}} {\color{tomato} + ๐ฒ}
\int {\color{gold}cos๐ฅ} = {\color{gold} sin๐ฅ} {\color{tomato} + ๐ฒ}
\int {\color{gold}sin๐ฅ} = {\color{gold} -cos๐ฅ} {\color{tomato} + ๐ฒ}
\int \frac{1}{1+x^2} = arctan(๐ฅ) {\color{tomato} + ๐ฒ}
\int \frac{1}{\sqrt{1+x^2}} = arcsin(๐ฅ) {\color{tomato} + ๐ฒ}
\int \frac{1}{cos^2x} = tan(๐ฅ) {\color{tomato} + ๐ฒ}
\int \frac{1}{sin^2x} = -cotan(๐ฅ) {\color{tomato} + ๐ฒ}
\int \frac{1}{\sqrt{1+x^2}} = ๐ป๐(๐ฅ + \sqrt{1+x^2}) {\color{tomato} + ๐ฒ}
\int \frac{1}{\sqrt{๐ฅยฒ-1}} = ๐ป๐(๐ฅ+ \sqrt{๐ฅยฒ-1}) {\color{tomato} + ๐ฒ}
โซ๐(๐(๐ฅ))๐'(๐ฅ)d๐ฅ = ๐น(๐(๐ฅ)) \text{, si } โซ๐(๐ฅ)d๐ฅ = ๐น(๐ฅ)
โซ๐ขd๐ฃ = ๐ข๐ฃ - โซ๐ฃd๐ข
๐ข=๐ d๐ฃ= ๐ d๐ฅ
Inversal Integration
\int_0^p f(x) \, dx = {\color{orange}p f(p)}
{\color{gold} - \int_0^p f^{-1}(f(x)) f'(x) \, dx }
โซ^p f(x) = {\color{orange} pยทf(p)}
{\color{gold} - \int^{f(p)} f^{-1}(f) df(x) }
This formula breaks down as follows:
- ๐ $( p f(p) )$ The rectangle approximation.
- ๐ก $( \int_0^p f^{-1}(f(x)) f'(x) , dx )$ : The correction term that accounts for the curvature of $( f(x) )$ .