4X Exercises - JulTob/Mathematics GitHub Wiki
Write the chemical equation
$CO + H_20 = H_2 + CO_2$ as an equation in ordered triples $(H, O, C)$ where $H$, $O$, $C$ are the number of hidrogen, oxigen, , and carbon atoms, respectively, in each molecule.
- a) Write the chemical equation $pC_3H_4O_3 + qO_2 = rCO_2 + sH_2O$ as an equation in ordered triples with unknown coefficients p, g, r, and s.
- b) Find the smallest positive integer solution for p, g, r, and s.
The given chemical equation is:
\text{CO} + \text{H}_2\text{O} \rightarrow \text{H}_2 + \text{CO}_2
Representing each molecule as ordered triples ((H, O, C)), where (H), (O), and (C) are the number of hydrogen, oxygen, and carbon atoms respectively:
(0, 1, 1) + (2, 1, 0) = (2, 0, 0) + (0, 2, 1)
This verifies that the chemical equation balances in terms of atoms.
Now for the second chemical equation:
pC_3H_4O_3 + qO_2 \rightarrow rCO_2 + sH_2O
We can write the corresponding system of equations in terms of ordered triples ((H, O, C)):
p(4, 3, 3) + q(0, 2, 0) = r(0, 2, 1) + s(2, 1, 0)
Separating the equations for (H), (O), and (C):
\begin{align*}
\text{For H:} & \quad 4p = 2s \\
\text{For O:} & \quad 3p + 2q = 2r + s \\
\text{For C:} & \quad 3p = r
\end{align*}
To find the smallest positive integer solution for (p), (q), (r), and (s), solve the system of equations:
- From $(\text{H}: 4p = 2s \quad \Rightarrow \quad s = 2p)$,
- From $(\text{C}: 3p = r \quad \Rightarrow \quad r = 3p)$,
- Substitute $(s = 2p)$ and $(r = 3p) into (\text{O}: 3p + 2q = 2(3p) + 2p)$:
3p + 2q = 6p + 2p \quad \Rightarrow \quad 2q = 5p \quad \Rightarrow \quad q = \frac{5p}{2}.
To ensure all coefficients are integers, let (p = 2) (smallest positive integer):
p = 2, \quad q = 5, \quad r = 6, \quad s = 4.
Thus, the smallest positive integer solution is:
p = 2, \quad q = 5, \quad r = 6, \quad s = 4.
The balanced equation with the smallest positive integer coefficients is:
2C_3H_4O_3 + 5O_2 \rightarrow 6CO_2 + 4H_2O
Sistemas Generadores en Kⁿ
- Respuesta
Un Sistema compatible determinado puede tener más ecuaciones independientes que incógnitas. ¿Verdadero o Falso? Justifica tu respuesta.
Estudiar si el sistema de ecuaciones paramétricas
⎧ 𝑥₁= 𝜆 − 𝜇
⎨ 𝑥₂= 2 + 3𝜆 + 𝜇
⎪ 𝑥₃= 3 - 𝜆 + 2𝜇
⎩ 𝑥₄= 2𝜆 + 5𝜇
es equivalente (tiene las mismas soluciones) al sistema de ecuaciones implícitas
⎰ 7𝑥₁ - 𝑥₂ + 4𝑥₃ = 10
⎱ 13𝑥₁ - 7𝑥₂ + 4𝑥₄ = 10