4V. Vectores - JulTob/Mathematics GitHub Wiki

Vectors

To the vector belongs the spoils

Arrow Arithmetics

Vector:

  • Magnitude
  • Direction
  • Sense

Example Signed numbers

  -3 -2 -1  0  1  2  3
┄┄─┼──┼──┼──┼──┼──┼──┼┄┄
   ⇆                 ⇆

Vectores

Aβƒ— = {aα΅’ ∈ A} : 𝕂ₙ

Vector unitario

𝐴̂= Aβƒ—β•±|Aβƒ—|

Dot product

A⃗·B⃗ 
	= βˆ‘ aα΅’Β·bα΅’
	= |A⃗||B⃗| cosϑ


Aβƒ—βŸ‚Bβƒ— 
∴ Aβƒ—Β·Bβƒ— = 0

Componente de Aβƒ— en direcciΓ³n u᷍ , un Vector Unitario

	= |Aβƒ—||u᷍| cosΟ‘
	= |A⃗|cosϑ
	= Aβƒ— Β· u᷍

Determinante

Det(A⃗, B⃗) =
βŽͺ πšβ‚ πšβ‚‚βŽ₯
βŽͺ      ⎜
βŽͺ 𝐛₁ 𝐛₂βŽͺ
= πšβ‚β€’ 𝐛₂  -   πšβ‚‚β€’ 𝐛₁ 
= |A⃗|‒|B⃗|‒sinθ
= Area of the Paralelogram 
 Aβƒ—β₯
  B⃗

Determinante Espacial ℝ³

Volume

Det(Aβƒ—, Bβƒ—, 𝐢⃗) =
βŽͺ πšβ‚ πšβ‚‚ πšβ‚ƒβŽ₯
βŽͺ 𝐛₁ 𝐛₂ π›β‚ƒβŽœ 
βŽͺ 𝒄₁ 𝒄₂ 𝒄₃βŽͺ
===========
πšβ‚βŽͺ 𝐛₂ π›β‚ƒβŽœ 
  βŽͺ 𝒄₂ 𝒄₃βŽͺ
+
-πšβ‚‚βŽͺ 𝐛₁ π›β‚ƒβŽœ 
   βŽͺ 𝒄₁ 𝒄₃βŽͺ
+
πšβ‚ƒβŽͺ 𝐛₁ π›β‚‚βŽœ 
  βŽͺ 𝒄₁ 𝒄₂βŽͺ

Cross Product

Cross product is a binary operation on two vectors in three- dimensional space. It results in a vector that is perpendicular to both vectors. The Vector product of two vectors, a and b, is denoted by a Γ— b. Its resultant vector is perpendicular to a and b. Vector products are also called cross products. Cross product of two vectors will give the resultant a vector and calculated using the Right-hand Rule.

A⃗×B⃗ 
= 
βŽͺ π•šα·   𝕛᷍  π•œα· βŽ₯
βŽͺ πšβ‚ πšβ‚‚ πšβ‚ƒβŽ₯
βŽͺ 𝐛₁ 𝐛₂ π›β‚ƒβŽœ 

=
π•šα· βŽͺ πšβ‚‚ πšβ‚ƒβŽ₯
 βŽͺ 𝐛₂ π›β‚ƒβŽœ 
+
𝕛᷍ βŽͺ πšβ‚ πšβ‚ƒβŽ₯
 βŽͺ 𝐛₁ π›β‚ƒβŽœ 
+
π•œα·
βŽͺ πšβ‚ πšβ‚‚βŽ₯
βŽͺ 𝐛₁ π›β‚‚βŽœ 

|A⃗×B⃗|
= Area of the Paralelogram 
 Aβƒ—β₯
  B⃗

Dirección(A⃗×B⃗)
⏊ al plano Aβƒ—,Bβƒ—
Right Hand Rule

A⃗×B⃗=-B⃗×A⃗

Volumen

= area(base) β€’ altura
= |Aβƒ—Γ—Bβƒ—|(A⃗‒𝒏⃗᷍)

Vectors

What is a vector?

  • Arrow (?)

  • Magnitude

  • Direction

Magnitude

Measured
πŸ“πŸ“πŸ”­
The way we measure a vector is context-dependent.

Direction

2D 2 numbers

float x;
float y;
[…]
x = x + xspeed;
y = y + yspeed;

Is the same as

PVector position;
…
position= position + speed