4V. Vectores - JulTob/Mathematics GitHub Wiki
Vectors
To the vector belongs the spoils
Arrow Arithmetics
Vector:
- Magnitude
- Direction
- Sense
Example Signed numbers
-3 -2 -1 0 1 2 3
ββββΌβββΌβββΌβββΌβββΌβββΌβββΌββ
β β
Vectores
Aβ = {aα΅’ β A} : πβ
Vector unitario
π΄Μ= Aββ±|Aβ|
Dot product
AβΒ·Bβ
= β aα΅’Β·bα΅’
= |Aβ||Bβ| cosΟ
AββBβ
β΄ AβΒ·Bβ = 0
Componente de Aβ en direcciΓ³n uα· , un Vector Unitario
= |Aβ||uα·| cosΟ
= |Aβ|cosΟ
= Aβ Β· uα·
Determinante
Det(Aβ, Bβ) =
βͺ πβ πββ₯
βͺ β
βͺ πβ πββͺ
= πββ’ πβ - πββ’ πβ
= |Aβ|β’|Bβ|β’sinΞΈ
= Area of the Paralelogram
Aββ₯
Bβ
Determinante Espacial βΒ³
Volume
Det(Aβ, Bβ, πΆβ) =
βͺ πβ πβ πββ₯
βͺ πβ πβ πββ
βͺ πβ πβ πββͺ
===========
πββͺ πβ πββ
βͺ πβ πββͺ
+
-πββͺ πβ πββ
βͺ πβ πββͺ
+
πββͺ πβ πββ
βͺ πβ πββͺ
Cross Product
Cross product is a binary operation on two vectors in three- dimensional space. It results in a vector that is perpendicular to both vectors. The Vector product of two vectors, a and b, is denoted by a Γ b. Its resultant vector is perpendicular to a and b. Vector products are also called cross products. Cross product of two vectors will give the resultant a vector and calculated using the Right-hand Rule.
AβΓBβ
=
βͺ πα· πα· πα· β₯
βͺ πβ πβ πββ₯
βͺ πβ πβ πββ
=
πα· βͺ πβ πββ₯
βͺ πβ πββ
+
πα· βͺ πβ πββ₯
βͺ πβ πββ
+
πα·
βͺ πβ πββ₯
βͺ πβ πββ
|AβΓBβ|
= Area of the Paralelogram
Aββ₯
Bβ
DirecciΓ³n(AβΓBβ)
β al plano Aβ,Bβ
Right Hand Rule
AβΓBβ=-BβΓAβ
Volumen
= area(base) β’ altura
= |AβΓBβ|(Aββ’πβα·)
Vectors
What is a vector?
-
Arrow (?)
-
Magnitude
-
Direction
Magnitude
Measured
πππ
The way we measure a vector is context-dependent.
Direction
2D 2 numbers
float x;
float y;
[β¦]
x = x + xspeed;
y = y + yspeed;
Is the same as
PVector position;
β¦
position= position + speed