441. Algebraic Geometry - JulTob/Mathematics GitHub Wiki
%%{init: {"quadrantChart": {"xAxisPosition": "bottom", "yAxisPosition": "left", "xRange": [-10, 10], "yRange": [-10, 10]}}} "titlePadding": 20}}}%%
quadrantChart
title Cartesian Plane
x-axis x
y-axis y
P1: [0.75, 0.75]
P2: [0.45, 0.23]
Origin: [0, 0] radius: 5, color: #444444, stroke-color: #ffffff, stroke-width: 3px
x : [0.1, 0] radius: 5, color: #666666, stroke-color: #ff0000, stroke-width: 3px
y : [0, 0.1] radius: 5, color: #666666, stroke-color: #00ff00, stroke-width: 3px
The great Descartes made a connection between algebra and geometry. He developed the Cartesian Plane.
In it, we can define algebraically different geometric points.
Here are two simple points:
$P_1 = (x_1, y_1)$ $P_2 = (x_2, y_2)$
We can then define the line that goes through both points.
Where:
-
$m = \frac{y_2-y_1}{x_2-x_1}$ is the slope of the line. -
$m = \tan{๐}$ , where$๐$ is the angle with$๐ฅฬ$ .
The equation of the line through the point
Where:
-
$R = (x, y, z)$ is the general point on the line. -
$t$ is a parameter that takes on all real values.
In coordinate form, the equations are:
The parametric equations of the line l through the points
%%{init: {"quadrantChart": {"pointRadius": 3, "pointTextPadding": 13, "titlePadding": 20}}}%%
quadrantChart
title Line
x-axis x
y-axis y
P1: [0.75, 0.6] radius: 5, color: #7560ff
P2: [0.45, 0.23] radius: 5, color: #4523ff
D: [0.3, 0.37] radius: 5, color: #a57c00
l1: [0.48, 0.267] color: #00FFFF
l2: [0.51, 0.304] color: #00FFFF
l3: [0.54, 0.34099999999999997] color: #00FFFF
l4: [0.5700000000000001, 0.378] color: #00FFFF
l5: [0.6000000000000001, 0.41500000000000004] color: #00FFFF
l6: [0.63, 0.45199999999999996] color: #00FFFF
l7: [0.66, 0.489] color: #00FFFF
l8: [0.69, 0.526] color: #00FFFF
l9: [0.72, 0.5630000000000001] color: #00FFFF
# for points
(x1, y1) = (0.75, 0.6) # P1
(x2, y2) = (0.45, 0.23) # P2
L = 10 # Line Points
dL = 1/L # line segment size
(dx, dy) = (x1-x2, y1-y2) # Vector distance
for t in range(0,L+1):
print(f" l{t}: [{x2 + (dx)*t*dL}, {y2+(dy)*t*dL}] color: #00FFFF\n")
If an object has a (constant) velocity vector
Consider a seagull that flies in calm air with velocity vector
Ordered List of elements that are part of a Vector Space.
Defined from an origin
$|๐ฏฬ|=1$ $๐ฏฬโฅ๐ฏโ$
$| ๐๐ฏโ |= ๐| ๐ฏโ |$ $๐๐ฏโ โฅ๐ฏโ$
๐ฎโ+๐ฏโ = ๐ฐโ
- ๐ฐแตข = ๐ฎแตข+๐ฏแตข
๐ฎโ,๐ฏโ,๐ฐโโ ๐โฟ
๐ฎโ+๐ฏโ= ๐ฏโ+๐ฎโ
๐ฎโ+๐ฏโ+๐ฐโ = ๐ฎโ+ (๐ฏโ+๐ฐโ) = (๐ฎโ+๐ฏโ)+๐ฐโ
๐ฎโ+ ๐โ = ๐ฎโ
๐ฎโ- ๐ฎโ = ๐โ
|๐ฏโโฃโฅ0
|๐ฏโ|=0โท๐ฏโ= ๐โ
|๐ฏโโฃ= |-๐ฏโโฃ
|๐ฎโ+๐ฏโ|โค |๐ฎโโฃ+|๐ฏโโฃ
๐ผ๐ฏโ = ๐ฏโ๐ผ
๐ผ(๐ฝ๐ฏโ)= (๐ผ๐ฝ)๐ฏโ
๐ผ(๐ฎโ+๐ฏโ)= ๐ผ๐ฎโ+๐ผ๐ฏโ
(๐ผ+๐ฝ)๐ฏโ = ๐ผ๐ฏโ+ ๐ฝ๐ฏโ
1๐ฏโ= ๐ฏโ
0๐ฏโ= ๐โ ๐ผ๐โ= ๐โ
๐ฏโโ ๐ผ = ๐ฏโ(1 โ ๐ผ)
๐ฏฬ=๐ฏโโ |๐ฏโ|
๐โฟ
- ๐โโ ๐โฟ
- ๐ฏโ โ ๐โฟโถ ๐ผ๐ฏโ โ ๐โฟ
- ๐ฎโ,๐ฏโโ ๐โฟ โถ [๐ฎโ+๐ฏโ]โ ๐โฟ
- Linear: [๐ผ๐ฎโ+๐ฝ๐ฏโ]โ ๐โฟ
- ๐ผ,๐ฝโ๐ธ
๐โฟ โ ๐โฟ
Subspace ๐โฟ: Space conditions
Equation of a Sphere.
- Centre:
$๐ข(h,k,l)$ - Point:
$๐ฏ(x,y,z)$
Given a Point
Or in general
-
$A = 0$ OR$C=0$ - Parabola
-
$A = C$ - Circunference
-
$sign(A) = sign(C)$ - Elipse
-
$sign(A) = -sign(C)$ - Hiperbola
-
$B^2 - 4AC = 0$ - Parabola
-
$B^2 - 4AC < 0$ - Elipse
-
$B^2 - 4AC > 0$ - Hiperbola
With
With:
-
${\color{RedOrange}โฏ} = 1$ for Parรกbolas -
${\color{RedOrange}โฏ} < 1$ for Elipses -
${\color{RedOrange}โฏ} > 1$ for Hiperbola
Given a Point
If we call the Position Point
Having three points
we can calculate the Normal Vector to the plane
The equation of the plane through
transformable to the system:
That we can generalize as
%%{init: {"quadrantChart": {"xAxisPosition": "bottom", "yAxisPosition": "left", "xRange": [-10, 10], "yRange": [-10, 10]}}} "titlePadding": 20}}}%%
quadrantChart
title Point(7,6) and N(4, 2.3)
x-axis x
y-axis y
X: [0.7, 0.6]
N: [0.4, 0.23]
S7_6: [0.0, 0.0] color: #0706FF
S7_7: [0.0, 0.22999999999999998] color: #0707FF
S7_8: [0.0, 0.45999999999999996] color: #0708FF
S7_9: [0.0, 0.69] color: #0709FF
S7_10: [0.0, 0.9199999999999999] color: #0710FF
S8_6: [0.4, 0.0] color: #0806FF
S8_7: [0.4, 0.22999999999999998] color: #0807FF
S8_8: [0.4, 0.45999999999999996] color: #0808FF
S8_9: [0.4, 0.69] color: #0809FF
S8_10: [0.4, 0.9199999999999999] color: #0810FF
S9_6: [0.8, 0.0] color: #0906FF
S9_7: [0.8, 0.22999999999999998] color: #0907FF
S9_8: [0.8, 0.45999999999999996] color: #0908FF
S9_9: [0.8, 0.69] color: #0909FF
S9_10: [0.8, 0.9199999999999999] color: #0910FF
scale = 10
(x0, y0) = (7, 6) # Point in Surface
(a, b) = (4, 2.3) # Normal
S = 10 # Origin Line Points
dS = 1/S # line segment size
for x in range(0,S+1):
for y in range(0,S+1):
X = a*(x - x0 )/scale
Y = b*(y - y0 )/scale
if X<= 1 and X>=0 and Y<= 1 and Y>=0:
print(f" S{x}_{y}: [{X }, {Y }] color: #{x:02}{y:02}FF\n")