40X2 Excercise - JulTob/Mathematics GitHub Wiki
Problem
Calculate the values of the parameter $t$ such that the condition $∣A^3∣=8$ is satisfied, given that $A$ is the following matrix:
A = \begin{pmatrix}
t - 1 & t + 1 & 3 \\
t^2 - t & t^2 + 2t & t \\
- t + 1 & - t - 1 & -2
\end{pmatrix}
Solution
To solve this problem, we need to find the values of $( t )$ for which the determinant of $( A^3 )$ is equal to $8$. This involves the following steps:
-
Calculate the determinant of $( A )$:
We need to calculate $(Det(A))$ because $(\left| A^3 \right| = \left( Det(A) \right)^3)$.
-
Set up the equation:
We will set $(\left( Det(A) \right)^3 = 8)$ and solve for $( t )$.
- Solve for $( t )$:
Simplify the equation and solve for the parameter $( t )$.
Step 1: Calculate the determinant of $( A )$
A = \begin{pmatrix}
t - 1 & t + 1 & 3 \\
t^2 - t & t^2 + 2t & t \\
- t + 1 & - t - 1 & - 2
\end{pmatrix}
The determinant of a $(3 \times 3)$ matrix $(A)$ can be calculated using the formula:
\det(A) = a(ei - fh) - b(di - fg) + c(dh - eg)
For the given matrix $( A )$:
\color{Gold}{\det(A)} =
\color{tomato}{ (t - 1)
\left( \color{red}{ (t^2 + 2t)(-2) - (t)(-1 - t) } \right) }
\color{lime}{ - (t + 1)
\left( \color{green}{ (t)(1 - t) - (t^2 - t)(-2) } \right) }
\color{cyan}{ + 3
\left( \color{blue}{ (t^2 - t)(-1 - t) - (t^2 + 2t)(1 - t) } \right) }
Now we compute each term individually.
\color{red}
(t^2 + 2t)(-2) - t(-1 - t) = -2t^2 - 4t + t + t^2 = -t^2 - 3t
\color{tomato}
(t - 1) \color{red}{(-t^2 - 3t)} = -t^3 - 3t^2 + t^2 + 3t = -t^3 - 2t^2 + 3t = -t·(t+3)·(t-1)
Calculate the second term:
\color{green}
(t^2 - t)(-2) - t(1 - t) = -2t^2 + 2t - t + t^2 = -t^2 + t = - t·(t-1)
So the second term is:
\color{lime}
-(t + 1)(-t^2 + t) = t^3 - t^2 - t^2 + t = t^3 - 2t^2 + t = t·(t+1)·(t-1)
Calculate the third term:
\color{blue}
(t^2 - t)(-1 - t) - (t^2 + 2t)(1 - t) = -t^2 - t^3 + t + t^2 - t^2 - 2t + t^3 + 2t^2 = t^2 - t = t(t-1)
So the third term is:
\color{cyan}
3(t^2 - t) = 3t^2 - 3t = 3·t·(t-1)
Adding these terms together gives:
\begin{eqnarray}
\color{gold}{ \det(A) } \\
& \color{gold}{ = + }
\color{tomato}{ (-t)·(t+3)·(t-1) }
\color{gold}{ - }
\color{lime}{ t·(t+1)·(t-1) }
\color{gold}{ + }
\color{cyan}{ 3t(t-1) } \\
& \color{gold}{
= t·(t-1)·( -(t+3) - (t+1) +3 ) } \\ & \color{gold}{
= t·(t-1)·( -t - t - 3 -1 + 3 ) } \\ & \color{gold}{
= t·(t-1)·( -2t -1 ) } \\ & \color{gold}{
= -t·(t-1)·(2t + 1)
}
\end{eqnarray}
From our premises we have that:
∣A^3∣=8
giben that
∣A^3∣= |A|^3
then
\color{gold}{
\begin{eqnarray}
-t·(t-1)·(2t + 1) = 2 \\
-t·(t(2t + 1)-1(2t + 1)) = 2 \\
-t·(2t^2 + t - 2t - 1) = 2 \\
-(2t^3 - t^2 - t) = 2 \\
-2t^3 + t^2 + t - 2 = 0 \\
\end{eqnarray}
\color{silver}{
\begin{eqnarray}
-2t^3 & + t^2 & + t & - 2 && : (t+1) \\
-2t^3 & + -2t^2 & & && -2t^2 \\
& + 3t^2 & + t & - 2 && \\
& + 3t^2 & + 3t & && 3t \\
& & - 2t & -2 && \\
& & - 2t & -2 && -2 \\
\end{eqnarray}
(t+1)(-2t^2 + 3t - 2) = 0
\color{silver}{
\begin{eqnarray}
-2t^2 & + 3t & - 2 && : (-t+2) \\
-2t^2 & + 4t & && 2t \\
& - t & - 2 && \\
& + t & - 2 && \\
\end{eqnarray}