221. Natural Numbers - JulTob/Mathematics GitHub Wiki

The integers came from God, everything else is man-made.

  • $Leopold$ $Kronecker$

Natural Numbers

In mathematics, Natural Numbers $( \mathbb{N} )$ form the building blocks of our number system. They can be viewed as counting numbers starting from either 0 or 1, depending on the context.

โ„•โฐ = {0,1,2,3,4,5,6,7,8,9,10...}
โ„•โบ =   {1,2,3,4,5,6,7,8,9,10...}

We begin counting with these numbers, and they represent an infinite set.

Despite their antiquity, the algebra of these numbers holds endless mysteries and leads to new discoveries.


Successor Function

Important

In Natural Numbers, each element $\color{silver}๐š— โˆˆ โ„•^โฐ$ has a unique $\color{gold}successor$ defined as $\color{gold}๐‘ (๐š—)$, which is the next integer.

โˆ€๐š—{โˆƒ๐‘ (๐š—)}
   ๐‘ (๐š—): โ„•โŸถโ„•  -- Mapping for natural numbers
                  (โ„•)<โ„•>   Input (โ„•); Output <โ„•> 
   
   ๐š—โ‰ ๐š– โ‡’ ๐‘ (๐š—)โ‰ ๐‘ (๐š–)    -- Injective property
Injective property The Inyective Property stablishes that every successor is unique to each number.

Addition of Naturals

Definition of Addition
๐š–+1 = ๐‘ (m)
๐š–+๐š— = ๐‘ (๐‘ (๐‘ (๐‘ (๐‘ (...๐‘ (๐š–)๏ฝ โƒจ๏ฝ = ๐‘ โฟ(๐š–)
      ๏ธธ๐š— iterations
๐š–+๐‘ (๐š—) = ๐‘ (๐š–+๐š—)

Example of Recursive Addition in Ada

function addition(n,m : Natural)return Natural is
   begin
   if m = 1 then return natural'succ(n);
     else return natural'succ(addition(n,m-1));
     end if;
   end addition;

Hereโ€™s a number line showing successive increments:

0  1  2  3  4  5  6   
โ” โ”€โ”€โ•‚โ”€โ”€โ•‚โ”€โ”€โ•‚โ”€โ”€โ•‚โ”€โ”€โ•‚โ”€โ”€โ•‚โ•Œโ•Œโ•Œ
๐‘ (๐š—)
โ†“  โ†“  โ†“  โ†“  โ†“  โ†“  โ†“
1  2  3  4  5  6  7
โ” โ”€โ”€โ•‚โ”€โ”€โ•‚โ”€โ”€โ•‚โ”€โ”€โ•‚โ”€โ”€โ•‚โ”€โ”€โ•‚โ•Œโ•Œโ•Œ

Properties of Addition

Commutative

$$๐š–๏นข๐š—๏ผ๐š—๏นข๐š–$$ $$๐‘Ž๏ผ‹๐‘๏ผ๐‘๏ผ‹๐‘Ž$$

Associative

$$(๐‘Ž๏ผ‹๐‘)๏ผ‹๐‘๏ผ๐‘Ž๏ผ‹(๐‘๏ผ‹๐‘)$$ $$(๐š–๏นข๐š—)๏ผ‹๐š™๏ผ๐š–๏ผ‹(๐š—๏นข๐š™)$$

Cancellation

$$๐š–๏ผ‹๐š™๏ผ๐š—๏ผ‹๐š™ โŸน ๐š–๏ผ๐š—$$

Product of Natural Numbers

The product of two natural numbers is defined recursively.

 ๐š–ยท๐Ÿท๏ผ๐š–
 ๐š–ยท๐‘ (๐š—)๏ผ๐š–ยท๐š—๏นข๐š–
$$n\cdot a = \underset {n \; times}{ \underbrace{ a + a + ... + a}}$$
Recursive Multiplication Algorithm
function product(n,m : Natural) return Natural is
   begin
   if n = 1 then return m;
     else return product(n-1,m)+m;
     end if;
   end product;
0   1   2   3   4   5   6   
โ” โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ•Œโ•Œโ•Œ
โจ‰๐š– โ†“
0   ๐š–   ๐Ÿธ๐š–  ๐Ÿน๐š–  ๐Ÿบ๐š–  ๐Ÿป๐š–   ๐Ÿผ๐š– 
โ” โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ•Œโ•Œโ•Œ
0   1   2   3   4   5   6   
โ” โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ•Œโ•Œโ•Œ
โฌ›๏ธ  ๐ŸŸฆ  ๐ŸŸฉ   ๐ŸŸจ  ๐ŸŸง  ๐ŸŸฅ   ๐ŸŸช
โจ‰2
0   1   2   3   4   5   6   7   8   9   10  11  12 
โ” โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ•Œโ•Œโ•Œ
โฌ›๏ธ      ๐ŸŸฆ      ๐ŸŸฉ       ๐ŸŸจ      ๐ŸŸง       ๐ŸŸฅ      ๐ŸŸช

Properties of Multiplication

Distributive

$$๐š™(๐š–๏นข๐š—)๏ผ๐š™๐š—๏นข๐š™๐š–๏ผ(๐š–๏นข๐š—)๐š™$$

Associative

$$(๐š–๐š—)๐š™๏ผ๐š–(๐š—๐š™)=๐š–๐š—๐š™$$

Commutative

$$๐š–๐š—๏ผ๐š—๐š–$$

Cancellation

$$๐š–๐š—๏ผ๐š–๐š™ โŸน ๐š—๏ผ๐š™$$

Powers of Natural Numbers

Powering natural numbers builds from repeated multiplication. $$๐š–โฐ๏ผ1$$ $$๐š–^{หขโฝโฟโพ}๏ผ๐š–โฟยท๐š–$$
function power(base, exponent : Natural) return Natural is
   begin
   if exponent = 1 
      then return base;
      else return power(base, exponent - 1) * base;
      end if;
   end power;

Properties of Powers

$$๐š–โฟร—๐š–แต–๏ผ๐š–โฟโบแต–$$ $$(๐š–โฟ)แต–๏ผ๐š–โฟแต–$$ $$๐š–แต–ร—๐š—แต–๏ผ(๐š–๐š—)แต–$$
0   1   2   3   4   5   6   
โ” โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ•Œโ•Œโ•Œ
โฌ›๏ธ  ๐ŸŸฆ  ๐ŸŸฉ   ๐ŸŸจ  ๐ŸŸง  ๐ŸŸฅ   ๐ŸŸช
โ•ฑโ•ฒ2
0   1   2   3   4   5   6   7   8   9   10  11  12  13  14  15  16 
โ” โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ”€โ”€โ”€โ•‚โ•Œโ•Œโ•Œ
โฌ›๏ธ  ๐ŸŸฆ          ๐ŸŸฉ                   ๐ŸŸจ                          ๐ŸŸง    

Ordering of Natural Numbers

Tip

Natural numbers have an intrinsic order:

  • For $m&lt;n$, there exists $p$ such that $m+p=n$.
$$\begin{matrix} ๐š–๏นค๐š— : & \\\ & โˆƒ๐š™ | ๐š–๏ผ‹๐š™=๐š— \\\ \end{matrix}$$

Trichotomy Property

For any two natural numbers $m$ and $n$:

$$\begin{matrix} โˆ€๐š– โˆง โˆ€๐š— : & \{ & \\\ & & ๐š–๏นค๐š— \\\ & & โˆจ \\\ & & ๐š–๏ผ๐š— \\\ & & โˆจ \\\ & & ๐š–๏นฅ๐š— \\\ & \} & & \\\ \end{matrix}$$

Well-Ordering Principle

A crucial property of natural numbers is that they are well-ordered.

Tip

Well-Ordering Principle

Every non-empty subset of $\mathbb{N}$ has a least element.

This property might seem obvious for simple subsets, but it applies even to complex sets defined indirectly. For example, the set of all numbers that can be expressed as $(12x + 28y)$ (where $(x)$ and $(y)$ are integers) has a smallest natural number, even though its structure is not immediately clear.

Warning

Practical Implication:

  • The well-ordering principle guarantees that we can always identify a minimal element within any non-empty subset of $( \mathbb{N} )$. This foundational property underpins the Principle of Mathematical Induction.

Principle of Mathematical Induction

Mathematical induction is a powerful proof technique that relies on the well-ordering principle.

Important

Principle of Mathematical Induction:

Suppose $( X \subset \mathbb{N} )$ meets these criteria:

  1. $( 1 \in X )$.
  2. If $( k \in X )$ for all $( k &lt; n )$, then $( n \in X )$.
  • If these conditions hold, then $( X = \mathbb{N} )$.
๐š— โˆŠ ๐”ธ โŠ‚ โ„•
๐‘ƒ(๐š—) : Injection Property  -- ๐‘ƒ(๐š—): Congruent with the property ๐‘ƒ on ๐š—
๐š—โ‚€: ๐‘ƒ(๐š—)		   -- Base case, typically 0 or 1
                   
๐š—:๐‘ƒ(๐š—) โ†’ ๐š—+1:๐‘ƒ(๐š—)	   -- Inductive step
                           -- If ๐š— was congruent to the property
                           -- then it implies ๐š—+1 must also be congruent

โˆดโˆ€๐š— โˆถ ๐‘ƒ(๐š—)		   -- Then all ๐š— must be congruent with ๐‘ƒ
$$โ˜ž ๐Ÿฃ ๐Ÿค ๐Ÿฅ ๐Ÿฆ ๐Ÿง ๐Ÿจ ๐Ÿฉ ๐Ÿช ๐Ÿซ ๐Ÿฌ ๐Ÿญ ๐Ÿฎ ๐Ÿฏ ๐Ÿฐ ... ๐Ÿ‚‘ ๐Ÿ‚’ ๐Ÿ‚“$$
Prove by induction $$1+2+3+โ‹ฏ+n= \frac{n(n+1)}{2}$$
n=1 $$1 = 1(1+1):2 = 1(2):2 = 1 โœ”$$
n โŸถ n+1 $$\begin{matrix} 1+2+3+...+n + n+1 & = & (n+1)(n+2):2 \\\ n(n+1)/2 + n+1 &=& (n+1)(n+2)/2 \\\ n(n+1) + 2n+2 &=& (n+1)(n+2) \\\ nยฒ+n+2n+2 &=& nยฒ+2n+n+2 \\\ nยฒ+3n+2 & = & nยฒ+3n+2 โœ“ \\\ \end{matrix}$$

Steps for Using Induction

  1. Base Case: Show that the smallest element (often $(1)$ or $( 0 )$ is in $( X )$.
  2. Inductive Step (Bootstrap): Show that if the property holds for $( k &lt; n )$, it must also hold for $( n )$.

Example 1.1: Counting Subsets

To prove by induction that a finite set with ( n ) elements has exactly ( 2^n ) subsets:

  • Base Case: For ( n = 1 ), a set with one element has two subsets (itself and the empty set).
  • Inductive Step: For a set with ( n ) elements, divide subsets into those containing a chosen element and those not containing it. This gives ( 2^{n-1} + 2^{n-1} = 2^n ) subsets.

Example 1.2: Sum of First $( n )$ Odd Numbers

The sum of the first $( n )$ positive odd integers is $( n^2 )$:

$$1 + 3 + 5 + \dots + (2n - 1) = n^2$$
Quick Exercise Try to prove the following formula by induction: ```math 1 + 3 + 5 + \dots + (2n - 1) = n^2 ```

Hint: Use the base case $( n = 1 )$, then assume it holds for $( k &lt; n )$ and prove it for $( n )$.


Order Relation

  • Well Ordering Axiom
    • Every nonempty subset of the set of nonnegative integers contains a smallest element.

The Peano Axioms

These axioms provide a framework for defining the structure of $โ„•$.

๐š—โˆŠโ„•
๐‘ : โ„•โŸถโ„•	
| โˆ€๐š—( โˆƒ!๐š– := ๐‘ (๐š—)	--- Each n has a unique successor
| ๐š—โ‚€โˆŠโ„• | โˆ€๐š—[ ๐‘ (๐š—)โ‰ ๐š—โ‚€ ]	
| ๐•ŒโŠ‚โ„•:
  | ๐š—โ‚€โˆŠ๐•Œ
  | ๐š—โˆŠ๐•ŒโŸถ๐‘ (๐š—)โˆŠ๐•Œ

โˆด ๐•Œ๏ผโ„•

Relaciรณn โ‰ค โ‰ฅ

๐š–โ‰ค๐š— : { ๐š–<๐š— โˆจ ๐š–=๐š—}
๐š–โ‰ฅ๐š— : { ๐š–>๐š— โˆจ ๐š–=๐š—}

Reglas

๐š–โ‰ค๐š— โŸน 
   ๐š–+๐š™ โ‰ค ๐š—+๐š™
   ๐š–ยท๐š™ โ‰ค ๐š—ยท๐š™   ๐š–,๐š—,๐š™โˆŠโ„•
  • Reflexiva
    • ๐š–โ‰ค๐š–
  • Antisimรฉtrica
    • { mโ‰คn โˆง nโ‰คm } โŸน m=n
  • Transitiva
    • { mโ‰คn โˆง nโ‰ค๐š™ } โŸน mโ‰ค๐š™

Principio de buena Ordenaciรณn

El conjunto โ„• con la relaciรณn โ‰ค es un conjunto bien ordenado.

โ„• como semianillo

El conjunto โ„• de los nรบmeros naturales es un semianillo ordenado conmutativo y con unidad.

  • โ‰ค
  • ๏ผ‹
    • Asociativa
    • Conmutativa
  • ร—
    • Asociativo
    • Distributivo en ๏ผ‹
    • Conmutativo
  • ๐Ÿท
    • ๐Ÿทร—n = n

The Axiomatic Method

Key Axioms and Assumptions

In mathematics, we use axioms to define fundamental truths without proof to avoid circular reasoning or infinite regress. Here, we accept:

  • The Well-Ordering Principle as an axiom about $( \mathbb{N} )$.
  • The elementary arithmetic operations on $( \mathbb{Z} )$, such as addition, subtraction, and multiplication, as foundational knowledge.

[!NoOTE]

Historical Note

The axiomatic approach has roots in ancient Greek mathematics, particularly in Euclid's Elements, where geometry was derived from a small set of axioms. The power of this method lies in deriving vast mathematical truths from a minimal set of assumptions.


Chapter Summary

In this chapter, weโ€™ve laid the groundwork for exploring the structure and properties of $( \mathbb{N} )$. Hereโ€™s a summary of key concepts:

  • $( \mathbb{N} )$ is closed under addition and multiplication.
  • Well-Ordering Principle: Every non-empty subset of $( \mathbb{N} )$ has a least element.
  • Principle of Mathematical Induction: Enables proofs that certain properties hold for all elements in $( \mathbb{N} )$.
  • Introduction of $( \mathbb{Z} )$ as the smallest set containing $( \mathbb{N} )$ and closed under subtraction.

This structured understanding of $( \mathbb{N} )$ will serve as a foundation for more complex topics in algebra and other mathematical fields.


Sum of Squares

Letโ€™s prove by mathematical induction that for all positive integers $( n )$:

$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(2n + 1)(n + 1)}{6}.$

Step 1: Base Case

We start by verifying the formula for $( n = 1 )$.

  • For $( n = 1 )$, the left side of the equation is simply $( 1^2 = 1 )$.
  • The right side of the equation, with $( n = 1 )$, becomes:

$\frac{1(2 \cdot 1 + 1)(1 + 1)}{6}$ $= \frac{1 \cdot 3 \cdot 2}{6}$ $= \frac{6}{6}$ $= 1$

  • Since both sides are equal, the formula holds for $( n = 1 )$.

Thus, the base case is true.

Step 2: Inductive Hypothesis

Assume that the formula holds for some positive integer $( k )$; that is, assume:

$$1^2 + 2^2 + 3^2 + \dots + k^2 = \frac{k(2k + 1)(k + 1)}{6}.$$

This assumption is called the inductive hypothesis.

Step 3: Inductive Step

We need to prove that if the formula holds for $( n = k )$, then it also holds for $( n = k + 1 )$. In other words, we need to show:

$$1^2 + 2^2 + 3^2 + \dots + k^2 + (k + 1)^2 = \frac{(k + 1)(2(k + 1) + 1)((k + 1) + 1)}{6}.$$

Proof of the Inductive Step

Starting with the left side of the equation for $( n = k + 1 )$, we have:

$$1^2 + 2^2 + 3^2 + \dots + k^2 + (k + 1)^2.$$

By the inductive hypothesis, we know that:

$$1^2 + 2^2 + 3^2 + \dots + k^2 = \frac{k(2k + 1)(k + 1)}{6}.$$

So, we can substitute this into our expression:

$$1^2 + 2^2 + 3^2 + \dots + k^2 + (k + 1)^2 = \frac{k(2k + 1)(k + 1)}{6} + (k + 1)^2.$$

Now, weโ€™ll simplify this expression by combining terms.

  1. Rewrite $( (k + 1)^2 )$ with a common denominator:
$$\frac{k(2k + 1)(k + 1)}{6} + \frac{6(k + 1)^2}{6} = \frac{k(2k + 1)(k + 1) + 6(k + 1)^2}{6}.$$
  1. Factor out $( (k + 1) )$ from the numerator:
$$= \frac{(k + 1) \left[ k(2k + 1) + 6(k + 1) \right]}{6}.$$
  1. Expand the terms inside the brackets:
$$= \frac{(k + 1) \left[ 2k^2 + k + 6k + 6 \right]}{6}.$$
  1. Combine like terms:
$$= \frac{(k + 1)(2k^2 + 7k + 6)}{6}.$$
  1. Factor the quadratic expression in the brackets:
$$= \frac{(k + 1)(k + 2)(2k + 3)}{6}.$$

This matches the right side of the expression we wanted to prove for $( n = k + 1 )$:

$$1^2 + 2^2 + 3^2 + \dots + (k + 1)^2 = \frac{(k + 1)(2(k + 1) + 1)((k + 1) + 1)}{6}.$$

Conclusion

Since we have shown that:

  1. The formula holds for the base case $( n = 1 )$,
  2. If the formula holds for $( n = k )$, then it also holds for $( n = k + 1 )$,

we conclude by the principle of mathematical induction that the formula is true for all positive integers $( n )$.

$$\boxed{1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(2n + 1)(n + 1)}{6}}.$$

Triangle inequality

To prove the generalized triangle inequality, weโ€™ll use mathematical induction on $( n )$. We want to show that for any real numbers $( x_1, x_2, \dots, x_n )$:

$$|x_1 + x_2 + \dots + x_n| \leq |x_1| + |x_2| + \dots + |x_n|.$$

Step 1: Base Case

For $( n = 1 )$, the statement is trivially true:

$$|x_1| \leq |x_1|.$$

This is clearly correct, so the base case holds.

Step 2: Inductive Hypothesis

Assume that the statement holds for some positive integer $( k )$; that is, assume:

$$|x_1 + x_2 + \dots + x_k| \leq |x_1| + |x_2| + \dots + |x_k|.$$

This assumption is called the inductive hypothesis.

Step 3: Inductive Step

We need to prove that if the statement holds for $( n = k )$, then it also holds for $( n = k + 1 )$. In other words, we need to show:

$$|x_1 + x_2 + \dots + x_k + x_{k+1}| \leq |x_1| + |x_2| + \dots + |x_k| + |x_{k+1}|.$$

Proof of the Inductive Step

Consider the expression $( |x_1 + x_2 + \dots + x_k + x_{k+1}| )$. We can rewrite this as:

$$|x_1 + x_2 + \dots + x_k + x_{k+1}| = |(x_1 + x_2 + \dots + x_k) + x_{k+1}|.$$

Now, we apply the triangle inequality for two terms $( A = x_1 + x_2 + \dots + x_k )$ and $( B = x_{k+1} )$, which states that $( |A + B| \leq |A| + |B| )$. Using this inequality, we get:

$$|(x_1 + x_2 + \dots + x_k) + x_{k+1}| \leq |x_1 + x_2 + \dots + x_k| + |x_{k+1}|.$$

By the inductive hypothesis, we know that:

$$|x_1 + x_2 + \dots + x_k| \leq |x_1| + |x_2| + \dots + |x_k|.$$

Substituting this into our inequality, we obtain:

$$|x_1 + x_2 + \dots + x_k + x_{k+1}| \leq |x_1| + |x_2| + \dots + |x_k| + |x_{k+1}|.$$

This completes the inductive step.

Conclusion

Since we have shown that:

  1. The statement holds for the base case $( n = 1 )$,
  2. If the statement holds for $( n = k )$, then it also holds for $( n = k + 1 )$,

we conclude by the principle of mathematical induction that the inequality is true for all positive integers $( n )$:

$$\boxed{|x_1 + x_2 + \dots + x_n| \leq |x_1| + |x_2| + \dots + |x_n|}.$$
โš ๏ธ **GitHub.com Fallback** โš ๏ธ