1.01. Set Theory - JulTob/Mathematics GitHub Wiki
๐ The Foundations and Operations of Set Theory
In our mathematical journey through set theory, we have already explored the vastness of sets, their structures, and the operations that allow us to manipulate them. Now, we delve deeper into the essential foundations and operations that form the core of set theory.
๐ The Essence of Sets
The universe of mathematics is built upon sets, denoted by symbols such as:
๐, ๐, โค, ๐ธ, ๐น, โ, โ, โ โฆ
A set ($๐ธ$) is a collection of elements, denoted as ($๐แตข$), where the order of elements is inconsequential. Sets are defined by the criteria that the elements satisfy.
Key Principles:
- Order: The arrangement of elements in a set doesn't matter.
- Self-containment: Sets cannot contain themselves as elements, a boundary defined to avoid paradoxes like Russell's Paradox.
To be a proper set, every element ($๐แตข$) has to be determined to follow some criteria to be in the set ($๐ธ$).
For instance, a set $๐ธ$ could contain:
๐ฉโ, ๐ฉโ, ๐โ, ๐โ, ๐โ, ๐ฉโโ
, ๐จโโโ, ๐ฃแตข...โ
๐ Set Definitions and Comparisons
-
Explicit Definition: Sets can be defined by listing their elements:
๐ = \{0, 1\}
-
Implicit Definition: Sets can also be described by properties that their elements satisfy:
๐ธ = \{ x \mid P(x) \}, \text{ where } P(x) \text{ is a condition for membership}
Set Equality:
-
Equality: Two sets are equal if they have the same elements, regardless of order:
๐ธ = ๐น \iff \forall x (x \in ๐ธ \iff x \in ๐น)
-
Inequality: Two sets are unequal if they contain different elements or some element is absent to the other:
๐ธ โ ๐น \iff \exists x (x \in ๐ธ \text{ and } x \notin ๐น)
Variables
๐
In mathematics, a variable represents an element or a collection of elements whose value can vary. Variables serve as placeholders within propositions, allowing for a range of truths depending on their values. The concept of a variable is central to understanding the fluid nature of mathematical statements.
The interplay between elements and sets forms the bedrock of set theory, illuminating the relationship between individual entities and the larger collections they inhabit. Let's delve into these concepts, rendered in the precise language of LaTeX, to explore the essence of variables, set membership, and the philosophical boundaries that define sets.
A variable $a$ can represent an element or a set of elements within a mathematical proposition, allowing for the exploration of truths across different values.
Set Membership
๐ โ ๐ธ
The notation $๐ โ ๐ธ$ signifies that the element $๐$ is a member of the set $๐ธ$, a fundamental relationship that connects individual entities to the larger mathematical universe they occupy.
๐ \in ๐ธ
This expression can be interpreted in several ways, emphasizing the multifaceted relationship between elements and sets:
- $๐$ is in $๐ธ$
- $๐$ belongs to $๐ธ$
- $๐$ is a member of $๐ธ$
- $๐$ is a point within the collection defined by $๐ธ$
Non-membership
๐ โ ๐ธ
Conversely, $aโA$ articulates the absence of $๐$ from the set $๐ธ$, delineating the boundaries of set membership and the exclusion of specific elements.
๐ \notin ๐ธ
This notation enforces the distinction between inclusion and exclusion within mathematical sets, affirming that:
- $๐$ is not an element of $๐ธ$.
- $๐$ is not in $๐ธ$.
- $๐$ does not belong to the set $๐ธ$.
ยฌ(๐โ๐ธ)
The Set of All Sets Paradox
The exploration of sets brings us to a philosophical and logical boundary: the notion that an element cannot be both a set and a member of itself
ยฌ(๐โ๐)
The conclusion is that the set of all sets does not exist due to the paradoxes such a set would entail.
๐ซ The Void and the Singleton
$โ $ and ${ a }$
The concept of the empty set $โ $, devoid of any elements, introduces the idea of nothingness, while the singleton set ${ a }$ illustrates the concept of individuality within set theory.
โ
Defines the null set, empty. It contains no elements.
โ
โ \{ \}
โ๐ฅ,โ๐ธ | ๐ทโจ๐ฅโฉ = ๐ฅโ๐ธ
It is itself a "subset" of any set.
Singleton ${ a }$
Set of one element
โญ Operations on Sets: Uniting and Intersecting Universes
Set operations, including union ($AโชB$), intersection ($AโฉB$), and subtraction ($AโB$), allow us to manipulate and explore the relationships between sets.
๐ Advanced Constructs: Relations and Cartesian Products
The Cartesian Cross Product ($AรB$) and logical relations extend our exploration into the realm of ordered pairs and interactions between sets, offering a new dimension of understanding through the mapping of elements and the formulation of relational structures.
Conclusion: The Interconnectedness of Set Theory
As we traverse the vast expanse of set theory, from the foundational concepts of sets and their elements to the intricate operations and relationships that bind them, we uncover the mathematical tapestry that underpins the universe of mathematics. This journey reveals the beauty of structure, the elegance of logic, and the profound interconnectedness that lies at the heart of set theory.
Through this exploration, we not only gain a deeper appreciation for the fundamental principles of mathematics but also develop a richer understanding of the cosmic dance of sets and operations that define the mathematical universe. This narrative, woven from the threads of set theory, invites us to continue our exploration, ever seeking the harmonies that define the cosmos of mathematics.
๐ธโ๐น
Define que el primer conjunto, a la izquierda, estรก comprendido por el segundo, a la derecha del sรญmbolo.
โ๐โ๐ธ:๏ฝ๐โ๐น๏ฝ
๐ธโช๐น
Uniรณn
La suma de dos conjuntos se da con el sรญmbolo U, significa reuniรณn.
El conjunto resultante al Unir Pelirrojos o Delgados (uniรณn elemental, aรฑadir los elemento)
๐ธโฉ๐น
Intersecciรณn
La aplicaciรณn de dos propiedades se da con el sรญmbolo โฉ , significa intersecciรณn de conjuntos.
El conjunto resultante al seleccionar Pelirrojas y Delgadas (uniรณn determinante, incluir propiedades).
๐ธโ, -๐ธ, ๏ฝ๐ธ
Complemento
โผA
โผA โก { a | a โ A }
๐ธ-๐น
Complemento Relativo
La diferencia entre dos conjuntos se da cรณmo los elementos del primer conjunto que no estรฉn presentes en el segundo.
๐ธ-๐น = {๐ฅ | ๐ฅโ๐ธ, ๐ฅโ๐น}
A nivel de lรณgica:
โฉ corresponde con un y
U con un o
- con un yยฌ (y noโฆ)
Definiciรณn de conjuntos
Enumeraciรณn
Lista de elementos. Definiciรณn por extensiรณn.
๐={0,1}
Definiciรณn
{x | P(x)}
x Satisface la propiedad de P(x)
The set of all xโs such that P (x) is true.
{ยฑn | n is a natural number}โจ
Soluciรณn de ecuaciones
Descripciรณn
- {๐ฅ | ๐ฅโ๐ธ}
Propiedades.
{๐ฅ | ๐ฅโ๐ y ๐ฅ satisface ๐ท}
{๐ฅ | ๐ฅโ๐, ๐ฅ : ๐ท(๐ฅ)}
Comparaciรณn de Sets
๐ธ=๐น
Tienen los mismos elementos.
- โ๐: ๐โ๐ธโท๐โ๐น
๐ธโ ๐น
No tienen los mismos elementos
๐ธโ๐น
Todos los elementos de ๐ธ estรกn en ๐น
- ๏ฝ2โฟ๏ฝโ๏ฝnโ2๏ฝ
- ๐ธโ๐น โง ๐ธโ๐น โบ ๐ธ=๐น
- โ๐ : ๐โ๐ธโถ๐โ๐น
Diagramas de Venn
๊ขโง๐งตโงโงโง
Propiedades
Propiedades definitorias de pertenencia a un conjunto.
๐ท{๐ฅ}
La variable ๐ cumple la propiedad ๐ฟ
Predicado
Dado un conjunto ๐ธ, un predicado ๐ท es una propiedad suscrita a ๐ฅ, un elemento cualquiera del conjunto.
- ๐ธ: universo del predicado.
- ๐ท๐๐โจ1โฉ = Falso
Cuantificadores predicativos (adjetivos)
Los elementos que
๐ธโ = ๏ฝ ๐ฅ โ ๐ธ โฃ ๐ทโจ๐ฅโฉ ๏ฝ
Subconjunto de ๐ธ que cumple ๐ท. Such as. Tal que.- ๐ = ๏ฝ ๐ฅโ โค โฃ ๐ฅยฒ-๐น๐ฅ+๐ธ=๐ถ๏ฝ
- ๐โ = ๏ฝ๐โโ : ๐=๐ธ๐ โโ๏ฝ
๐ธ:๐ท
- Cualquier predicado sobre ๐ธ define un subconjunto
- Dos predicados son equivalentes cuando determinan el mismo subconjunto.
- ๐ทโ๐น
- La propiedad ๐ทโจ๐ฅโฉ: ๐ฅโ๐ธ define un subconjunto
Tamaรฑo
|๐ธ| = n
โ |๐โจ๐ธโฉ| = 2โฟ
Operaciones con conjuntos
Union
La uniรณn de conjuntos define como la propiedad de los elementos de pertenecer al menos a un conjunto. * ๐ธโช๐น * ๐ฅ: ๐ด๐ฅโจ๐ต๐ฅ
- ๐ธ โ ๐ธโช๐น y ๐น โ ๐ธโช๐น
- Conmutaciรณn
- ๐ธโช๐น = ๐นโช๐ธ
- Asociativa
- ๐ธโช๐นโชโ
- ๐ธโชโ = ๐ธ
- ๐ธโช๐ธ= ๐ธ
โโ ๐ธแตข
Intersecciรณn
* ๐ธโฉ๐น
* ๐ฅ: ๐ด๐ฅโง๐ต๐ฅ
- ๐ธโฉ๐น โ ๐ธ ๐ธโฉ๐น โ ๐น
- Conmutaciรณn
- ๐ธโฉ๐น = ๐นโฉ๐ธ
- Asociativa
- ๐ธโฉ๐นโฉโ
- ๐ธโฉโ = โ
- ๐ธโฉ๐ธ= ๐ธ
- ๐ธโฉ๐น โ ๐ธโช๐น
- Grupos Disjuntos sii
- ๐ธโฉ๐น=โ
- Ecuaciones incompatibles
โโ ๐ธแตข
Distribuciรณn
- ๐ธโฉ(๐นโชโ)= ๐ธโฉ๐น โช ๐ธโฉโ
- ๐ธโช(๐นโฉโ)= ๐ธโช๐น โฉ ๐ธโชโ
Diferencia
- ๐ธ-๐น=๐ธโงต๐น
- ๐ฅ: ๐ด๐ฅโงยฌ๐ต๐ฅ
- ๐ธ-๐น = ๐ธ - ๐ธโฉ๐น
- ๐ธ-๐น = ๐ธโฉยฌ๐น
๐โจ๐โฉ
={
โ
๐ธ
ยฌ๐ธ
๐น
ยฌ๐น
๐ธ๐น
๐ธยฌ๐น
ยฌ๐ธ๐น
ยฌ๐ธยฌ๐น
๐
}
Diferencia simรฉtrica
- ๐ธโฉ๐น = ๐ธโช๐น - ๐ธโฉ๐น
- ๐ธ-๐น = ๐ธโฉ(๐ธโฉ๐น)
รlgebra de conjuntos
Idempotencia
- ๐ธโ๐ธ= ๐ธ
- ๐ด๐ฅโ๐ด๐ฅโบ ๐ด๐ฅ
- ๐ธโ๐ธ= ๐ธ
- ๐ด๐ฅโ๐ด๐ฅโบ ๐ด๐ฅ
Conmutaciรณn
- ๐ธโ๐น = ๐นโ๐ธ
- ๐ด๐ฅโ๐ต๐ฅ โบ ๐ต๐ฅโ๐ด๐ฅ
- ๐ธโ๐ธ= ๐นโ๐ธ
- ๐ด๐ฅโ๐ต๐ฅ โบ ๐ต๐ฅโ๐ด๐ฅ
Asociativas
- ๐ธโ๐นโโ
- ๐ด๐ฅโ๐ต๐ฅโ๐ช๐ฅ
- ๐ธโ๐นโโ
- ๐ด๐ฅโ๐ต๐ฅโ๐ช๐ฅ
Distributivas
- (๐ธโ๐น)โโ= ๐ธโโ โ ๐นโโ
- (๐ด๐ฅโ๐ต๐ฅ)โ๐ช๐ฅ โบ ๐ด๐ฅโ๐ช๐ฅ โ ๐ต๐ฅโ๐ช๐ฅ
- (๐ธโ๐น)โโ= ๐ธโโ โ ๐นโโ
- (๐ด๐ฅโ๐ต๐ฅ)โ๐ช๐ฅ โบ ๐ด๐ฅโ๐ช๐ฅ โ ๐ต๐ฅโ๐ช๐ฅ
Identidad
- ๐ธโโ
=๐ธ
- ๐ด๐ฅโ๐ โบ ๐ด๐ฅ
- ๐ธโ๐=๐
- ๐ด๐ฅโ๐ โบ ๐
- ๐ธโโ
=โ
- ๐ด๐ฅโ๐ โบ ๐
- ๐ธโ๐=๐ธ
- ๐ด๐ฅโ๐ โบ ๐ด๐ฅ
Complemento
- ๐ธโ๐ธอ = ๐
- ๐ด๐ฅโยฌ๐ด๐ฅโบ ๐
- ๐ธโ๐ธอ = โ
- ๐ด๐ฅโยฌ๐ด๐ฅโบ ๐
- ๐ธออ = ๐ธ
- ยฌยฌ๐ด๐ฅโบ ๐ด๐ฅ
- ๐อ = โ
- ยฌ๐ โบ ๐
- โ
อ = ๐
- ยฌ๐ โบ ๐
De Morgan
- ยฌ(๐ธโ๐น) = ยฌ๐ธโยฌ๐น
- ยฌ(๐ด๐ฅโ๐ต๐ฅ)โบ ยฌ๐ด๐ฅโยฌ๐ต๐ฅ
- ยฌ(๐ธโ๐น) = ยฌ๐ธโยฌ๐น
- ยฌ(๐ด๐ฅโ๐ต๐ฅ)โบ ยฌ๐ด๐ฅโยฌ๐ต๐ฅ
Producto de dos conjuntos
Vector: Producto cartesiano, Par ordenado
๐ธร๐น= {
(๐,๐) โฃ ๐โ๐ธ, ๐โ๐น }
๐ธยฒ= ๐ธร๐ธ= {
(๐,๐) โฃ ๐,๐ โ๐ธ}
โยฒ: Plano Cartesiano
๐ธร๐น โ ๐นร๐ธ
๐ธโร๐ธโรยทยทยทร๐ธโ
๐ธโฟ : Nuplas, N-Vector
={ (๐โ,๐โ,...,๐โ) | ๐แตขโ๐ธ }
Relaciรณn Lรณgica
๐
= {(๐,๐) โฃ ๐โ๐ธ, ๐โ๐น : ๐ด๐ฅ๐ฆ }
๐ es un grafo de la relaciรณn lรณgica, o correspondencia.
๐ : ๐ธโถ๐น
๐ธ: conjunto inicial
๐น: conjunto final
๐๐๐ฆ ๐ estรก relacionado con ๐ฆ
๐๐ฬธ๐ฆ No estรก relacionado.
Ejemplo:
๐ธ={0,1,2} = ๐น
๐๐๐ฆ : ๐ menor que ๐ฆ
๐={ (0,1),(0,2),(1,2)}
0๐1,0๐2,1๐2,
0๐ฬธ0, 1๐ฬธ0, 2๐ฬธ0, 1๐ฬธ1, 2๐ฬธ1, 2๐ฬธ2
```Ada
## Inversa
```Ada
๐โปยน
= { (๐,๐) โ ๐นร๐ธ : ๐ }
Ejemplo
Del anterior
๐โปยน ={ (1,0),(2,0),2,1) }
Composiciรณn
๐โโฌ
= ๐ฅ๐๐ฆโฌ๐ง = ๐ฅ๐๐ฆ โ ๐ฆโฌ๐ง
Lรณgica Relacional
โ๐ฅโ๐ธ,โ๐ฆโ๐น: ๐๐ฅ๐ฆ
โ๐ฅโ๐ธ,โ๐ฆโ๐น: ๐๐ฅ๐ฆ
โ๐ฅโ๐ธ,โ๐ฆโ๐น: ๐๐ฅ๐ฆ
G. Cantor
- Un conjunto queda definido por una propiedad.
- Un conjunto es una identidad matemรกtica, puede ser un elemento.
- Dos conjuntos con los mismos elementos son iguales
Escuela 1: G. Frege, B. Russell, E. Zermelo, A. Fraenkel
Escuela 2: von Newman, Bernay, Gรถdel
Teorรญa de Conjuntos de ZF
Axiomas:
- Extensiรณn: โ๐ฅ : [ ๐ฅโ๐ธโท๐ฅโ๐น]โถ๐ธ=๐น
- Conjunto Vacรญo: โโ : โ๐ฅ(๐ฅโโ )
- Pares: โ๐ธ,๐น โโ : โ๐ฅ[ ๐ฅโโโท(๐ฅ=๐ธโ๐ฅ=๐น)]
- Uniรณn: โโ โ๐ โ๐ฅ : [ ๐ฅโ๐โทโ๐ธ:(๐ธโโโ๐ฅโ๐ธ)]
- Conjunto de Potencia: ๐โจโโฉ
- โโ โ๐โจ๐ธโฉ โ๐น:
- ๐นโ ๐โจ๐ธโฉโทโ๐ฅ:
- ๐ฅโ๐นโถ๐ฅโ๐ธ
- ๐นโ ๐โจ๐ธโฉโทโ๐ฅ:
- โโ โ๐โจ๐ธโฉ โ๐น:
- Especificaciรณn:
- ๐(๐ก)
- โ๐ธ โ๐น โ๐ฅ :
- ๐ฅโ๐นโท๐ฅโ๐ธโ ๐(๐ฅ)
- Sustituciรณn:
- ๐(๐ก,๐ฃ)
- ๐ฅโ๐ธ
- ๐น={๐ฆ| ๐(๐ฅ,๐ฆ)}
- ๐: ๐ธโถ๐น
- : ๐(๐ธ)=๐น
- Infinitud
- โ๐ธ :
- โ โ๐ธ
- โ
- โ๐ฅ ๐ฅโ๐ธโถ๐ฅโ{๐ฅ}โ๐ธ
- โ๐ธ :
- Regularidad:
- โ๐ธ :
- ๐ธโ โ
โถโ๐น:
- ๐ธโ๐น=โ
- ๐ธโ โ
โถโ๐น:
- โ๐ธ :
Paradoja de Cantor
- โโ:(โ๐โ ๐ฅโโ)
- โโ๐โจโโฉ
- โถ ๐โจโโฉโโ
- โ= ๐โจโโฉ โ
Paradoja de Russel
- Sea ๐ el conjunto de conjuntos que no son elementos de sรญ mismos.
- ๐={๐|๐โ๐}
- ยฟEs ๐ un elemento de sรญ mismo?
Equivalence
Let ๐ธ be a set.
A relation on ๐ธ is a comparison test
between members of ordered pairs of elements of ๐ธ.
If the pair (๐, ๐) โ ๐ธ ร ๐ธ passes this test, we write
๐ โ ๐
and read โa is related to bโ. An equivalence relation
on ๐ธ is a relation that has the following properties:
- Reflexivity
๐ โ ๐
- Symmetry
๐โ๐ โบ ๐โ๐
- Transitivityโจ
aโb
bโc
โ aโc
The set ๐ = {๐ โ ๐ธ | ๐ โ ๐} of all elements that are equivalent to ๐ is called the equivalence class of ๐.
Predicados
Operaciones con conjuntos
Algebra de Boole
Producto cartesiano
Relaciones
Set Operations
Set operations are the tools that allow us to navigate the vast and complex cosmos of mathematics, combining, intersecting, and differentiating sets in a manner that reveals the underlying structure of the mathematical universe.
๐ The Universal Set
At the foundation of our cosmic exploration is the Universal Set, denoted as $U$. This set is the mathematical universe itself, encompassing all the elements under consideration. The Universal
set is what we define to be the universal set, contextually. The Universal Set contains all the elements we are interested in.
Every set within our discussion is a subset of this universal domain, much like how every star, planet, and galaxy exists within the star system, the galaxy, and the universe itself.
\text{Let } U \text{ be the universal set, then for any set } A, \, A \subseteq U.
๐ Overlap
In sets, two fundamental interaction exist: Intersection and Union.
Intersection (โฉ)
When sets overlap, sharing common elements, their intersection is the set of all elements they have in common. The intersection of sets $A$ and $B$ is denoted as $A โฉ B$.
The set of all overlapping elements.
A \cap B = \{x \mid x \in A \text{ and } x \in B\}
If the intersection is empty $(๐ธโฉ๐น๏ผโ )$, then the sets are disjoint. If the intersection is not empty $(๐ธโฉ๐นโ โ )$, then the sets intersect.
Union (โช)
The union of sets combines all elements from each set, creating a new set that contains every element from both, without duplicates. The union of sets $A$ and $B$ is denoted as $A โช B$.
The set of all elements in either group.
A \cup B = \{x \mid x \in A \text{ or } x \in B\}
๐ซ Subtraction and Complement: Defining the Other
Beyond the realms of union and intersection lie the concepts of Subtraction and Complement, operations that define what remains when we exclude certain elements.
Subtraction (โ)
The subtraction of set $B$ from set $A$ (denoted $A - B$) leaves us with a set containing only those elements of $A$ that are not in $B$.
The Subtraction of B from A is the set after taking away from A all the elements in B.
A - B = A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}
Complement
The complement of a set $A$ within the universal set $U$ consists of all elements in $U$ that are not in $A$. It represents the "outside" of $A$ in the universe.
Aฬ
= U - A
\bar{A} = ยฌA = Aโ = U - A = \{x \mid x \in U \text{ and } x \notin A\}
โญ Properties of Set Operations
Set operations adhere to several foundational properties that govern their behaviour.
Commutative
- $AโชB=BโชA$
- $AโฉB=BโฉA$
Associative
- $Aโช(BโชC)=(AโชB)โชC$
- $Aโฉ(BโฉC)=(AโฉB)โฉC$
Distributive
- $Aโช(BโฉC)=(AโชB)โฉ(AโชC)$
- $Aโฉ(BโชC)=(AโฉB)โช(AโฉC)$
Idempotency
- $AโชA=A$
- $AโฉA=A$
Identity
- $A โช โ = A$
- $A โฉ U = A$
- $A โฉ โ = โ $
- $A โช U = U$
Transitive
- $If A โ B โ C$, then $A โ C$
Involution
- $ยฌยฌA = A$
De Morgan
- $ยฌ(AโฉB) = ยฌA โช ยฌB$
- $ยฌ(AโชB) = ยฌA โฉ ยฌB$
Cartesian Cross Product
The Cartesian Cross Product expands our horizons, creating pairs from elements of two sets that illuminate the relationships between them, much like charting coordinates in space.
A \times B = \{(a, b) \mid a \in A, b \in B\}
A ร B = {
{a1,b1}, {a2,b1}, {a3,b1}, ---
{a1,b2}, {a2,b2}, ---
{a1,b3}, ---
---
Set operations are the fabric through which the universe of mathematics is woven, allowing us to explore the relationships between sets in a structured and meaningful way. Through these operations, we unveil the interconnectedness of all mathematical concepts, reflecting the intricate and boundless nature of the cosmos itself.
๐ฅ Power Set
A power set is the set of all possible subsets of a given set, including the empty set and the set itself.
Example:
If $ A = {1, 2} $๏ฟผ, then the power set of $A$๏ฟผ, denoted as $\mathcal{P}(A)$ ๏ฟผ, is:
\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}
[!IMPORTANT]
- If a set $A$ ๏ฟผ has $n$๏ฟผ elements, the power set will have $2^n$๏ฟผ subsets.
- The smallest power set is $\mathcal{P}(โ ) = {โ }$๏ฟผ.
Itโs essentially like listing every combination of the elements in the original set.
Famous Sets
โ Natural Numbers
โค Integers
โ Rationals
โ Reals
โ Complex
Modifiers:
- $S^{*}$: S except 0
- $S^{+}$: S non-negatives.
- $S^{>0}$: S Strictly positives.
Intervals
Certainly! Here's a concise explanation:
๐ Intervals as Sets
Intervals in mathematics are sets that contain all numbers between two endpoints, often representing a continuous range of values. Each interval is defined by the properties of its boundaries:
-
Closed Interval $[a, b]$: Includes the endpoints $a$ and $b$, as well as all numbers in between.
- Example: $[1, 3] = {x : 1 \leq x \leq 3}$.
-
Open Interval $(a, b)$: Includes all numbers between $a$ and $b$, but excludes the endpoints.
- Example: $(1, 3) = {x : 1 < x < 3}$.
-
Half-Open Intervals $[a, b)$ or $(a, b]$: Include only one endpoint.
- Example: $[1, 3) = {x : 1 \leq x < 3}$.
Intervals are perfect examples of sets because they collect all numbers that satisfy a given condition: being between $a$ and $b$.