📊. Plots & Diagrams - JulTob/Mathematics GitHub Wiki

HTML Colors

  • $\color{silver}silver$
  • $\color{gold}gold$
  • $\color{red}red$
  • $\color{lime}lime$
  • $\color{cyan}cyan$
  • $\color{blue}blue$
  • $\color{green}green$

Diagrams

Mermaid

---
config:
  look: handDrawn
  theme: dark
---

graph TD;
  Vs@{ shape: loop-limit, label: "🔋12V🔋" }
  R1@{ shape: stadium, label: "💡R" }
  Sw@{ shape: diamond, label: "Switch 🕹" }
  R2@{ shape: stadium, label: "💡2R💡" }
  NA@{ shape: circ, label: "🔆" }
  R3@{ shape: stadium, label: "💡R" }
  C@{ shape: processes, label: "C(Vc)" }
  Gr@{ shape: trap-t, label: "🔌Ground🔌" }

  classDef Node fill:#555,stroke:#AAA,stroke-width:2px;
  classDef source fill:#500,stroke:#f00,stroke-width:2px;
  classDef resistance fill:#005,stroke:#00A,stroke-width:2px;
  classDef switch fill:#050,stroke:#0A0,stroke-width:2px;
  classDef cond fill:#055,stroke:#0AA,stroke-width:2px;
  classDef ground fill:#550,stroke:#AA0,stroke-width:2px;
  class Vs source;
  class R1,R2,R3 resistance;
  class Sw switch;
  class NA Node;
  class Gr ground;
  class C cond;

  Vs o---o R1
  R1 o----o Sw
  Sw o-.-o|t<0| R2 
  Sw o-.-o|t>0| NA 
  R2 o---o NA
  NA o---o R3 
  R3 o---o Gr
  NA o---o C 
  C o---o Gr

  linkStyle default stroke: gold, stroke-width:4px
---
config:
  look: handDrawn
  theme: dark

---
flowchart LR
    A@{ shape: circle, label: "H0✋" }
    B@{ shape: dbl-circ, label: "H1👍" }
    C@{ shape: dbl-circ, label: "H2👎" }
    D@{ shape: dbl-circ, label: "H3🀚" }
    A ==>|R| B 
    A ==>|F| D
    B ==>|R| A
    B ==>|F| C
    C ==>|R| D
    C ==>|F| B
    D ==>|R| C
    D ==>|F| A
    linkStyle 0,2,4,6 stroke: gold
    linkStyle 1,3,5,7 stroke: tomato


---
config:
  look: handDrawn
  theme: dark
---
flowchart TD
div((("÷")))
mult((("✖")))
sum((("✚")))
set((("")))
style set fill:#900,stroke:#100,stroke-width:4px
style sum fill:#090,stroke:#010,stroke-width:4px
style mult fill:#009,stroke:#001,stroke-width:4px
style div fill:#504,stroke:#101,stroke-width:4px
style FIELD fill:#302,stroke:#f0f,stroke-width:7px
style RING fill:#005,stroke:#00f,stroke-width:7px
style GROUP fill:#050,stroke:#0f0,stroke-width:7px
style SET fill:#500,stroke:#f00,stroke-width:7px
subgraph FIELD
 subgraph RING
  subgraph GROUP
    direction TB
    subgraph SET
        direction RL
        set 
    end
    sum
   end
   mult
  end
div
end

📊 Grafical Representation: Plots

Dots

40%: 🔎🔎🔎🔎⚪⚪⚪⚪⚪⚪ = 🔎🔎⚪⚪⚪



50 \%
\text{  🔎🔎🔎🔎🔎⚪⚪⚪⚪⚪} = \text{  🔎⚪} 
1:2
🟠:🟣🟣

Ratios
🩞🩞💧💧💧 2:3

2/5
🟥🟥⬜⬜⬜

Cartesian plane diagram

%%{init: {"quadrantChart": {"pointRadius": 3, "pointTextPadding": 13, "titlePadding": 20}}}%%

quadrantChart
    title Line
    x-axis x
    y-axis y
    P1: [0.75, 0.6] radius: 5, color: #7560ff
    P2: [0.45, 0.23] radius: 5, color: #4523ff
    D: [0.3, 0.37] radius: 5, color: #a57c00

    l1: [0.48, 0.267] color: #00FFFF

    l2: [0.51, 0.304] color: #00FFFF

    l3: [0.54, 0.34099999999999997] color: #00FFFF

    l4: [0.5700000000000001, 0.378] color: #00FFFF

    l5: [0.6000000000000001, 0.41500000000000004] color: #00FFFF

    l6: [0.63, 0.45199999999999996] color: #00FFFF

    l7: [0.66, 0.489] color: #00FFFF

    l8: [0.69, 0.526] color: #00FFFF

    l9: [0.72, 0.5630000000000001] color: #00FFFF

# for points 
(x1, y1) = (0.75, 0.6) # P1
(x2, y2) = (0.45, 0.23) # P2
L = 10 # Line Points
dL = 1/L # line segment size
(dx, dy) = (x1-x2, y1-y2) # Vector distance

for t in range(0,L+1):
    print(f"    l{t}: [{x2 + (dx)*t*dL}, {y2+(dy)*t*dL}] color: #00FFFF\n")

Pies

pie
    title Pie Chart
    "A" : 40
    "B" : 60

Bars

A	┍🟊🟊🟊🟊🟊🟊🟊🟊
B	┝🟩🟩🟩🟩🟩
C	┝🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
D	┕🟥🟥🟥🟥🟥🟥🟥

Diagramas

Modelos de Barras

╭─┌────────┌──┐
│ │        │  │
╰─┌────────┌──┘

Axis

vertical axis
𝚢↑
𝟌┌⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
𝟻┌⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
𝟺┌⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
𝟹┌⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
𝟞┌⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
𝟷┌⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
𝟶┌─┌─┌─┌─┌─┌─┌─┌─┌─┌─→𝚡 horizontal axis
 𝟶⠀𝟷⠀𝟞 𝟹 𝟺 𝟻 𝟌 𝟜 𝟟 𝟿 
☝🏻Origin

╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌╋╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌
 ╷    ╷    ╷    ╷    ╷    ┃    ╷    ╷    ╷    ╷    ╷   
╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌╋╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌
 ╷    ╷    ╷    ╷    ╷    ┃    ╷    ╷    ╷    ╷    ╷   
╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌╋╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌
 ╷    ╷    ╷    ╷    ╷    ┃    ╷    ╷    ╷    ╷    ╷   
╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌╋╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌
 ╷    ╷    ╷    ╷    ╷    ┃    ╷    ╷    ╷    ╷    ╷   
━╋━━━━╋━━━━╋━━━━╋━━━━╋━━━━╋━━━━╋━━━━╋━━━━╋━━━━╋━━━━╋━━━━
 ╷    ╷    ╷    ╷    ╷    ┃    ╷    ╷    ╷    ╷    ╷   
╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌╋╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌
 ╷    ╷    ╷    ╷    ╷    ┃    ╷    ╷    ╷    ╷    ╷   
╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌╋╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌
 ╷    ╷    ╷    ╷    ╷    ┃    ╷    ╷    ╷    ╷    ╷   
╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌╋╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌╌┌╌╌╌
 ╷    ╷    ╷    ╷    ╷    ┃    ╷    ╷    ╷    ╷    ╷   

╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌╋╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌
╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌╋╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌
╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌╋╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌
╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌╋╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌
╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌╋╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌
╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌╋╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌
━╋━╋━╋━╋━╋━╋━╋━╋━╋━╋━╋━╋━╋━╋━╋━╋━╋━
╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌╋╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌
╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌╋╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌
╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌╋╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌
╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌╋╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌
╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌╋╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌╌

Bar Graphs

y 
𝟷┌🟥 𝟣
𝟞┌🟧🟧🟧🟧⠀𝟰⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
𝟹┌🟚🟚🟚🟚🟚🟚⠀𝟲
𝟺┌🟩🟩🟩⠀𝟯⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
 ┌─┌─┌─┌─┌─┌─┌─┌──→ Quantity
 𝟶⠀𝟷⠀𝟞 𝟹 𝟺 𝟻 𝟌 𝟜 

Point Plots (Battleship plots)

 
𝟌┌╌┌╌┌╌┌╌┌╌🟡┌╌┌⠀⠀⠀⠀🟢(1,1)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
𝟻┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌⠀⠀⠀⠀🔎(3,3)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
𝟺┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌⠀⠀⠀⠀🟡(5,6)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
𝟹┌╌┌╌┌╌🔎┌╌┌╌┌╌┌⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
𝟞┌╌┌╌┌╌┌╌┌╌┌╌┌╌┌⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
𝟷┌╌🟢┌╌┌╌┌╌┌╌┌╌┌⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
 ┌─┌─┌─┌─┌─┌─┌─┌──→ Quantity
 𝟶⠀𝟷⠀𝟞 𝟹 𝟺 𝟻 𝟌 𝟜 

Area Plots ("Temperature" Maps)

𝟜┌⬜⬜⬜⬜⬜⬜⬜⠀⠀⠀⠀🟥100%⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
𝟌┌⬜⬜🟩🟩🟩⬜⬜⠀⠀⠀⠀🟧 75%⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
𝟻┌⬜🟩🟚🟧🟚🟩⬜⠀⠀⠀⠀🟚 50%⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
𝟺┌⬜🟩🟧🟥🟧🟩⬜⠀⠀⠀⠀🟩 25%⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
𝟹┌⬜🟩🟚🟧🟚🟩⬜⠀⠀⠀⠀⬜  0%⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
𝟞┌⬜⬜🟩🟩🟩⬜⬜⠀⠀
𝟷┌⬜⬜⬜⬜⬜⬜⬜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
𝟶┌─┌─┌─┌─┌─┌─┌─┌──→ Quantity
 𝟶⠀𝟷⠀𝟞 𝟹 𝟺 𝟻 𝟌 𝟜 

Cartessian Plane

⬜⬜⬜⬜⬜⬜🔲⬜⬜⬜⬜⬜⬜
⬜⬜⬜⬜⬜⬜🔲⬜⬜⬜⬜⬜⬜
⬜⬜⬜⬜⬜⬜🔲⬜⬜⬜⬜⬜⬜
⬜⬜⬜⬜⬜⬜🔲⬜⬜⬜⬜⬜⬜
⬜⬜⬜⬜⬜⬜🔲⬜⬜⬜⬜⬜⬜
⬜⬜⬜⬜⬜⬜🔲⬜⬜⬜⬜⬜⬜
🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲
⬜⬜⬜⬜⬜⬜🔲⬜⬜⬜⬜⬜⬜
⬜⬜⬜⬜⬜⬜🔲⬜⬜⬜⬜⬜⬜
⬜⬜⬜⬜⬜⬜🔲⬜⬜⬜⬜⬜⬜
⬜⬜⬜⬜⬜⬜🔲⬜⬜⬜⬜⬜⬜
⬜⬜⬜⬜⬜⬜🔲⬜⬜⬜⬜⬜⬜
⬜⬜⬜⬜⬜⬜🔲⬜⬜⬜⬜⬜⬜
🔲⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜
🔲⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜
🔲⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜
🔲⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜
🔲⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜
🔲⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜
🔲⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜
🔲⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜
🔲⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜
🔲⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜
🔲⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜
🔲⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜
🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲

Ploting Lines

Grapher Code

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
procedure grapher is -- 🔲⬜🟥
    X: Float := 0.0;
    Y: Float := 0.0;
    R: Float := 0.0;
    N: Natural := 15;
begin
    for I in -N..N loop
    for J in -N..N loop
      x := float(I)/float(N);
      y := float(J)/float(N);
      R := x*x + y*y ;
      if I = 0 or J = 0 then Put("🔲"); else
        if R <= 1.0 then Put("🔎"); else Put("🔳");end if;
        end if;
      end loop; 
      new_line;
      end loop;
end grapher;
🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔲🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳
🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳
🔳🔳🔳🔳🔳🔳🔳🔳🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔳🔳🔳🔳🔳🔳🔳🔳
🔳🔳🔳🔳🔳🔳🔎🔎🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔎🔎🔳🔳🔳🔳🔳🔳
🔳🔳🔳🔳🔳🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔳🔳🔳🔳🔳
🔳🔳🔳🔳🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔳🔳🔳🔳
🔳🔳🔳🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔳🔳🔳
🔳🔳🔳🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔳🔳🔳
🔳🔳🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔳🔳
🔳🔳🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔳🔳
🔳🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔳
🔳🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔳
🔳🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔳
🔳🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔳
🔳🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔳
🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲🔲
🔳🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔳
🔳🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔳
🔳🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔳
🔳🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔳
🔳🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔳
🔳🔳🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔳🔳
🔳🔳🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔳🔳
🔳🔳🔳🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔳🔳🔳
🔳🔳🔳🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔳🔳🔳
🔳🔳🔳🔳🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔳🔳🔳🔳
🔳🔳🔳🔳🔳🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔎🔎🔎🔳🔳🔳🔳🔳
🔳🔳🔳🔳🔳🔳🔎🔎🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔎🔎🔳🔳🔳🔳🔳🔳
🔳🔳🔳🔳🔳🔳🔳🔳🔎🔎🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔎🔎🔳🔳🔳🔳🔳🔳🔳🔳
🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔎🔎🔎🔎🔎🔲🔎🔎🔎🔎🔎🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳
🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔲🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳
with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
procedure Grapher is -- 🔲⬜🟥
    X: Float := 0.0;
    Y: Float := 0.0;
    R: Float := 0.0;
    N: Natural := 20;
begin
    for I in -N..0 loop
    for J in 0..N loop
      x := float(I)/float(N);
      y := float(J)/float(N);
      R := x*x + y*y ;
      if R > 1.0 then Put("🔳"); 
      elsif R>= 0.9 then Put("🟥");
      elsif R>= 0.8 then Put("🟧");
      elsif R>= 0.7 then Put("🟚");
      elsif R>= 0.6 then Put("🟩");
      elsif R>= 0.5 then Put("🟊");
      elsif R>= 0.4 then Put("🟪");
      elsif R>= 0.3 then Put("🟫");
      elsif R>= 0.2 then Put("🟥");
      elsif R>= 0.1 then Put("🟧");
      elsif R>= 0.01 then Put("🟚");
      elsif R>= 0.001 then Put("🟩");
      else Put("🟊"); end if;
      end loop; 
      new_line;
      end loop;
end Grapher;

🟥🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳
🟥🟥🟥🟥🟥🟥🟥🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳
🟧🟧🟧🟧🟧🟧🟥🟥🟥🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳
🟚🟚🟚🟚🟚🟚🟧🟧🟧🟥🟥🔳🔳🔳🔳🔳🔳🔳🔳🔳🔳
🟩🟩🟩🟩🟩🟚🟚🟚🟧🟧🟧🟥🟥🔳🔳🔳🔳🔳🔳🔳🔳
🟊🟊🟊🟊🟩🟩🟩🟩🟚🟚🟧🟧🟥🟥🔳🔳🔳🔳🔳🔳🔳
🟪🟪🟪🟊🟊🟊🟊🟩🟩🟩🟚🟚🟧🟥🟥🔳🔳🔳🔳🔳🔳
🟪🟪🟪🟪🟪🟪🟊🟊🟊🟩🟩🟚🟚🟧🟥🟥🔳🔳🔳🔳🔳
🟫🟫🟫🟫🟪🟪🟪🟪🟊🟊🟩🟩🟚🟚🟧🟥🟥🔳🔳🔳🔳
🟫🟫🟫🟫🟫🟫🟫🟪🟪🟊🟊🟩🟩🟚🟚🟧🟥🔳🔳🔳🔳
🟥🟥🟥🟥🟥🟫🟫🟫🟪🟪🟊🟊🟩🟩🟚🟧🟧🟥🔳🔳🔳
🟥🟥🟥🟥🟥🟥🟥🟫🟫🟪🟪🟊🟊🟩🟩🟚🟧🟥🔳🔳🔳
🟧🟧🟧🟧🟥🟥🟥🟥🟫🟫🟪🟪🟊🟊🟩🟚🟧🟧🟥🔳🔳
🟧🟧🟧🟧🟧🟧🟥🟥🟥🟫🟫🟪🟪🟊🟩🟩🟚🟧🟥🔳🔳
🟚🟚🟧🟧🟧🟧🟧🟥🟥🟥🟫🟫🟪🟊🟊🟩🟚🟧🟥🟥🔳
🟚🟚🟚🟚🟧🟧🟧🟧🟥🟥🟫🟫🟪🟪🟊🟩🟚🟚🟧🟥🔳
🟚🟚🟚🟚🟚🟧🟧🟧🟥🟥🟥🟫🟪🟪🟊🟩🟩🟚🟧🟥🔳
🟚🟚🟚🟚🟚🟚🟧🟧🟧🟥🟥🟫🟫🟪🟊🟊🟩🟚🟧🟥🔳
🟚🟚🟚🟚🟚🟚🟧🟧🟧🟥🟥🟫🟫🟪🟪🟊🟩🟚🟧🟥🔳
🟩🟩🟚🟚🟚🟚🟚🟧🟧🟥🟥🟫🟫🟪🟪🟊🟩🟚🟧🟥🔳
🟊🟩🟚🟚🟚🟚🟚🟧🟧🟥🟥🟫🟫🟪🟪🟊🟩🟚🟧🟥🟥

Scattered Plot

%%{init: {"quadrantChart": {"pointRadius": 1, "pointTextPadding": 13, "titlePadding": 20}}}%%

quadrantChart
    title Vector space in 2D
    x-axis x
    y-axis x

    A: [0.3, 0.6]
    B: [0.45, 0.23]
    C: [0.57, 0.99]
    D: [0.78, 0.34]
    E: [0.40, 0.34]
    F: [0.35, 0.78]


Level Curves

Let $f$ be a function of two variables and let $c$ be a constant. The set of all $(x, y)$ in the plane such that $f(x, y) = c$ is called a level curve of $f$ (with value c).

Level Curves

---
title: "Vector Space"
config:
  radar:
    axisScaleFactor: 1
    curveTension: 0

  theme: dark
  themeVariables:
    cScale0: "#FF0000"
    cScale1: "#00FF00"
    cScale2: "#FFFF00"
    
    radar:
      curveOpacity: 0.125
      graticuleColor: silver 
      graticuleOpacity: 0.05
---
radar-beta
  axis a["𝔞"], b["𝔹"], c["ℂ"]
  axis d["𝔻"], e["𝔌"], f["𝔜"]
  curve v1["V1"]{3, 3, 0, 2, 5, 4}
  curve v2["V2"]{7, 5, 4, 1.5, 2, 1}
  curve v3["V1+V2"]{10, 8, 4, 3.5, 7, 5}

  max 10
  min 0
  ticks 10
  graticule polygon