SEP 2018 VOL 52 Introduction to SPI Interface - JohnHau/mis GitHub Wiki

Serial peripheral interface (SPI) is one of the most widely used interfaces between microcontroller and peripheral ICs such as sensors, ADCs, DACs, shift registers, SRAM, and others. This article provides a brief description of the SPI interface followed by an introduction to Analog Devices’ SPI enabled switches and muxes, and how they help reduce the number of digital GPIOs in system board design.

SPI is a synchronous, full duplex master-slave-based interface. The data from the master or the slave is synchronized on the rising or falling clock edge. Both master and slave can transmit data at the same time. The SPI interface can be either 3-wire or 4-wire. This article focuses on the popular 4-wire SPI interface.

image

The device that generates the clock signal is called the master. Data transmitted between the master and the slave is synchronized to the clock generated by the master. SPI devices support much higher clock frequencies compared to I2C interfaces. Users should consult the product data sheet for the clock frequency specification of the SPI interface.

SPI interfaces can have only one master and can have one or multiple slaves. Figure 1 shows the SPI connection between the master and the slave.

The chip select signal from the master is used to select the slave. This is normally an active low signal and is pulled high to disconnect the slave from the SPI bus. When multiple slaves are used, an individual chip select signal for each slave is required from the master. In this article, the chip select signal is always an active low signal.

MOSI and MISO are the data lines. MOSI transmits data from the master to the slave and MISO transmits data from the slave to the master.

Data Transmission To begin SPI communication, the master must send the clock signal and select the slave by enabling the CS signal. Usually chip select is an active low signal; hence, the master must send a logic 0 on this signal to select the slave. SPI is a full-duplex interface; both master and slave can send data at the same time via the MOSI and MISO lines respectively. During SPI communication, the data is simultaneously transmitted (shifted out serially onto the MOSI/SDO bus) and received (the data on the bus (MISO/SDI) is sampled or read in). The serial clock edge synchronizes the shifting and sampling of the data. The SPI interface provides the user with flexibility to select the rising or falling edge of the clock to sample and/or shift the data. Please refer to the device data sheet to determine the number of data bits transmitted using the SPI interface.

Clock Polarity and Clock Phase In SPI, the master can select the clock polarity and clock phase. The CPOL bit sets the polarity of the clock signal during the idle state. The idle state is defined as the period when CS is high and transitioning to low at the start of the transmission and when CS is low and transitioning to high at the end of the transmission. The CPHA bit selects the clock phase. Depending on the CPHA bit, the rising or falling clock edge is used to sample and/or shift the data. The master must select the clock polarity and clock phase, as per the requirement of the slave. Depending on the CPOL and CPHA bit selection, four SPI modes are available. Table 1 shows the four SPI modes.

image

Figure 2 through Figure 5 show an example of communication in four SPI modes. In these examples, the data is shown on the MOSI and MISO line. The start and end of transmission is indicated by the dotted green line, the sampling edge is indicated in orange, and the shifting edge is indicated in blue. Please note these figures are for illustration purpose only. For successful SPI communications, users must refer to the product data sheet and ensure that the timing specifications for the part are met. image

Figure 3 shows the timing diagram for SPI Mode 1. In this mode, clock polarity is 0, which indicates that the idle state of the clock signal is low. The clock phase in this mode is 1, which indicates that the data is sampled on the falling edge (shown by the orange dotted line) and the data is shifted on the rising edge (shown by the dotted blue line) of the clock signal.

image

Figure 4 shows the timing diagram for SPI Mode 2. In this mode, the clock polarity is 1, which indicates that the idle state of the clock signal is high. The clock phase in this mode is 1, which indicates that the data is sampled on the falling edge (shown by the orange dotted line) and the data is shifted on the rising edge (shown by the dotted blue line) of the clock signal. image

Figure 5 shows the timing diagram for SPI Mode 3. In this mode, the clock polarity is 1, which indicates that the idle state of the clock signal is high. The clock phase in this mode is 0, which indicates that the data is sampled on the rising edge (shown by the orange dotted line) and the data is shifted on the falling edge (shown by the dotted blue line) of the clock signal.

image

Multislave Configuration Multiple slaves can be used with a single SPI master. The slaves can be connected in regular mode or daisy-chain mode.

image

image

image

image

image

image

image

Figure 13 is for illustration purposes. The ADGS1412 data sheet recommends a pull-up resistor on the SDO pin. Please refer to the ADGS1412 data sheet for further details on daisy-chain mode. For the sake of simplicity, four switches have been used in this example. As the number of switches increase in a system, the benefits of board simplicity and space saving is significant. The ADI SPI enabled switches provide a 20% overall board space reduction in a 4 × 8 crosspoint configuration with eight quad SPST switches on a 6-layer board. The article “Precision SPI Switch Configuration Increases Channel Density” provides detail on how precision SPI switch configuration increases channel density.

Analog Devices offers several SPI enabled switches and multiplexers. For more information visit here.

References ADuCM3029 data sheet. Analog Devices, Inc., March 2017.

Nugent, Stephen. “Precision SPI Switch Configuration Increases Channel Density.” Analog Dialogue, May 2017.

Usach, Miguel. AN-1248 Application Note: SPI Interface. Analog Devices, Inc., September 2015.