meeting 2025 07 24 n57 - JacobPilawa/TriaxSchwarzschild_wiki_6 GitHub Wiki
- Following up on diagnostics/sanity checks/fixing a few of the plots from the last meeting.
-
One item on my agenda was to find any potential rb measurements for the galaxies in our table:
- NGC 708 = 2.29 arcsec/0.76 kpc
-
Halo masses
- N57 and H15 use M200 (N57 I computed; H15 from Habas+18)
- NGC 4486 = 10^14.7 Msun from Massive VII
- NGC 4649 = 10^14.7 Msun from Massive VII
- NGC 4889 = 10^15.2 Msun from Massive VII
- All other halo masses are from Crook 2007 HDC projected mass estimator columns
-
Group HDC Counts
- Galaxy group counts are also from Crook 2007's HDC catalog; N57 does not appear so we use N=1 for this galaxy
- H15's group galaxy counts are from Agulli+17 (assuming r-K colors of 2.8 and using the M_K = -23.0 magnitude cut to be consistent with HDC catalog)
-
Currently (I was wrong in the last meeting), I am not "correcting" any of the black hole masses for cosmologicaly effects (e.g., using the redshifts). I'm not sure if we want to do this or simply leave the black hole masses as they are measured and reported in the original references. I am somewhat inclined to leave the masses as they are quoted since (a) the corrections will be very small, (b) we're not doing anything super quantitative with the black hole masses, and (c) avoid errors in doing this correction.
- We wanted to ensure that the radii were being computed properly, so here are some diagnostics on that front.
- For some additional context:
- We have a routine called R_from_ap_and_bin() which takes in the aperture and bin files as they appear in TriOS, and outputs either the bin center (x,y) positions, or the bin radii. I've first verified that these give equivalent answers. In my radial plots, the radius I am plotting is from the R_from_ap_and_bin() (x,y) centers, converted to radii, and taking the absolute value (since we have switched to folded radial plots instead of the unfolded versions).
Here are the numbers from R_from_ap_and_bin() for the radii, (x,y) centers, and then manually computing the radii from the (x,y) centers
# | (x,y) | r | (x,y)-->r |
---|---|---|---|
1 | [2.1553 1.1367] | 2.4366 | 2.4366 |
2 | [1.5189 2.8107] | 3.1948 | 3.1948 |
3 | [-0.2053 0.1033] | 0.2298 | 0.2298 |
4 | [0.7184 0.4133] | 0.8288 | 0.8288 |
5 | [-0.1026 0.4133] | 0.4259 | 0.4259 |
6 | [1.4955 2.1848] | 2.6476 | 2.6476 |
7 | [ 1.2572 -2.0925] | 2.4411 | 2.4411 |
8 | [ 0.6842 -0.8956] | 1.127 | 1.127 |
9 | [-3.0789 -0.9743] | 3.2294 | 3.2294 |
10 | [-3.3575 2.7162] | 4.3186 | 4.3186 |
11 | [-0.4105 -0.1033] | 0.4233 | 0.4233 |
12 | [0.8895 1.3089] | 1.5825 | 1.5825 |
13 | [-0.5132 -1.0333] | 1.1537 | 1.1537 |
14 | [ 0.6158 -1.705 ] | 1.8128 | 1.8128 |
15 | [-2.1758 -1.4053] | 2.5902 | 2.5902 |
16 | [ 0.1368 -1.3778] | 1.3846 | 1.3846 |
17 | [ 1.7447 -0.7233] | 1.8887 | 1.8887 |
18 | [-2.3263 0.0689] | 2.3273 | 2.3273 |
19 | [0.4105 0.7233] | 0.8317 | 0.8317 |
20 | [-3.6827 0.4498] | 3.71 | 3.71 |
21 | [0.2053 0.1033] | 0.2298 | 0.2298 |
22 | [-3.6332 1.7567] | 4.0356 | 4.0356 |
23 | [-0.1026 -1.0333] | 1.0384 | 1.0384 |
24 | [1.3 1.1022] | 1.7044 | 1.7044 |
25 | [ 1.0947 -1.3089] | 1.7064 | 1.7064 |
26 | [-1.3342 1.55 ] | 2.0451 | 2.0451 |
27 | [0.4105 0.1033] | 0.4233 | 0.4233 |
28 | [1.0263 0.5167] | 1.149 | 1.149 |
29 | [ 0. -0.7233] | 0.7233 | 0.7233 |
30 | [ 1.5737 -0.3444] | 1.6109 | 1.6109 |
31 | [-3.0379 0.5373] | 3.085 | 3.085 |
32 | [-0.2053 0.7233] | 0.7519 | 0.7519 |
33 | [-2.2836 2.2217] | 3.186 | 3.186 |
34 | [-3.0789 -0.4133] | 3.1066 | 3.1066 |
35 | [-0.9032 1.8187] | 2.0306 | 2.0306 |
36 | [-0.8211 -2.6571] | 2.7811 | 2.7811 |
37 | [ 1.7789 -0.0689] | 1.7803 | 1.7803 |
38 | [-1.7789 1.5156] | 2.337 | 2.337 |
39 | [-2.0184 -1.8944] | 2.7682 | 2.7682 |
40 | [-2.3811 2.8107] | 3.6836 | 3.6836 |
41 | [-1.3 -1.1022] | 1.7044 | 1.7044 |
42 | [-0.1026 1.9633] | 1.966 | 1.966 |
43 | [-0.2053 -0.31 ] | 0.3718 | 0.3718 |
44 | [ 0.7184 -0.62 ] | 0.949 | 0.949 |
45 | [-2.1211 -0.1378] | 2.1255 | 2.1255 |
46 | [ 2.1553 -0.7233] | 2.2734 | 2.2734 |
47 | [ 0.7245 -2.711 ] | 2.8061 | 2.8061 |
48 | [-0.8895 1.1022] | 1.4164 | 1.4164 |
49 | [-0.8211 0.7233] | 1.0942 | 1.0942 |
50 | [0.3079 1.0333] | 1.0782 | 1.0782 |
51 | [2.3459 2.7162] | 3.589 | 3.589 |
52 | [2.3605 0.31 ] | 2.3808 | 2.3808 |
53 | [-1.7789 -0.5511] | 1.8624 | 1.8624 |
54 | [0.6158 2.8675] | 2.9329 | 2.9329 |
55 | [-2.6171 0.2067] | 2.6253 | 2.6253 |
56 | [ 0.9237 -1.0333] | 1.386 | 1.386 |
57 | [-0.6158 0.7233] | 0.95 | 0.95 |
58 | [-2.5145 0.62 ] | 2.5898 | 2.5898 |
59 | [0.6158 0.7233] | 0.95 | 0.95 |
60 | [-0.7389 -1.8187] | 1.9631 | 1.9631 |
61 | [ 0.9237 -1.86 ] | 2.0767 | 2.0767 |
62 | [ 0.7184 -0.2067] | 0.7476 | 0.7476 |
63 | [0.3849 2.2475] | 2.2802 | 2.2802 |
64 | [2.1406 1.7124] | 2.7412 | 2.7412 |
65 | [ 1.7447 -1.1367] | 2.0823 | 2.0823 |
66 | [3.0533 0.8525] | 3.1701 | 3.1701 |
67 | [-2.7095 0.9507] | 2.8714 | 2.8714 |
68 | [3.4895 1.55 ] | 3.8182 | 3.8182 |
69 | [-0.8397 2.5552] | 2.6896 | 2.6896 |
70 | [ 0.2053 -0.31 ] | 0.3718 | 0.3718 |
71 | [1.7961 1.0333] | 2.0721 | 2.0721 |
72 | [ 0.7184 -0.4133] | 0.8288 | 0.8288 |
73 | [-2.5658 -0.93 ] | 2.7291 | 2.7291 |
74 | [1.0263 0.1033] | 1.0315 | 1.0315 |
75 | [-0.7184 -0.62 ] | 0.949 | 0.949 |
76 | [ 1.3 -0.2756] | 1.3289 | 1.3289 |
77 | [-1.0947 -0.7578] | 1.3314 | 1.3314 |
78 | [-0.5132 1.0333] | 1.1537 | 1.1537 |
79 | [ 0.2053 -0.93 ] | 0.9524 | 0.9524 |
80 | [-0.9579 1.3778] | 1.678 | 1.678 |
81 | [-2.6428 -1.8342] | 3.2169 | 3.2169 |
82 | [1.0263 0.93 ] | 1.385 | 1.385 |
83 | [-1.0263 -0.1033] | 1.0315 | 1.0315 |
84 | [0.7184 1.0333] | 1.2585 | 1.2585 |
85 | [-0.4105 -0.7233] | 0.8317 | 0.8317 |
86 | [-0.1026 1.0333] | 1.0384 | 1.0384 |
87 | [-2.1553 -0.5167] | 2.2163 | 2.2163 |
88 | [1.95 0.31] | 1.9745 | 1.9745 |
89 | [ 1.0263 -0.31 ] | 1.0721 | 1.0721 |
90 | [-0.4105 0.7233] | 0.8317 | 0.8317 |
91 | [ 3.4895 -0.8956] | 3.6026 | 3.6026 |
92 | [-2.1553 1.1367] | 2.4366 | 2.4366 |
93 | [ 3.4602 -0.2214] | 3.4672 | 3.4672 |
94 | [ 2.6684 -0.1033] | 2.6704 | 2.6704 |
95 | [1.3342 1.7567] | 2.2059 | 2.2059 |
96 | [0.78 1.7773] | 1.941 | 1.941 |
97 | [0.7184 0. ] | 0.7184 | 0.7184 |
98 | [-1.1289 -1.86 ] | 2.1758 | 2.1758 |
99 | [ 1.3684 -0.9644] | 1.6741 | 1.6741 |
100 | [-1.3342 0.4133] | 1.3968 | 1.3968 |
101 | [0.2737 1.3089] | 1.3372 | 1.3372 |
102 | [-3.6827 -0.6565] | 3.7407 | 3.7407 |
103 | [-0.1368 1.3089] | 1.316 | 1.316 |
104 | [-1.3684 1.1711] | 1.8011 | 1.8011 |
105 | [-1.6421 -0.31 ] | 1.6711 | 1.6711 |
106 | [-0.325 2.9278] | 2.9458 | 2.9458 |
107 | [-2.6684 -1.3433] | 2.9875 | 2.9875 |
108 | [-0.2053 -0.7233] | 0.7519 | 0.7519 |
109 | [1.3 0.6889] | 1.4712 | 1.4712 |
110 | [ 0. -0.31] | 0.31 | 0.31 |
111 | [-1.7105 2.2389] | 2.8175 | 2.8175 |
112 | [-0.6158 0.31 ] | 0.6894 | 0.6894 |
113 | [ 2.9103 -2.8048] | 4.0419 | 4.0419 |
114 | [-1.6421 1.8083] | 2.4427 | 2.4427 |
115 | [-2.1211 0.3444] | 2.1488 | 2.1488 |
116 | [1.5395 1.3433] | 2.0432 | 2.0432 |
117 | [ 2.6684 -0.5167] | 2.718 | 2.718 |
118 | [-1.3342 0. ] | 1.3342 | 1.3342 |
119 | [ 0.2822 -2.1183] | 2.1371 | 2.1371 |
120 | [-2.6684 1.3433] | 2.9875 | 2.9875 |
121 | [-1.3342 -0.4133] | 1.3968 | 1.3968 |
122 | [1.3 0.2756] | 1.3289 | 1.3289 |
123 | [-0.7184 0. ] | 0.7184 | 0.7184 |
124 | [0.8211 0.7233] | 1.0942 | 1.0942 |
125 | [-3.3581 -2.5131] | 4.1943 | 4.1943 |
126 | [ 0.7526 -1.3778] | 1.5699 | 1.5699 |
127 | [ 2.0526 -0.3617] | 2.0843 | 2.0843 |
128 | [-1.7789 -0.8956] | 1.9917 | 1.9917 |
129 | [ 0.3079 -0.62 ] | 0.6922 | 0.6922 |
130 | [3.6407 0.5547] | 3.6827 | 3.6827 |
131 | [-3.2842 1.0953] | 3.4621 | 3.4621 |
132 | [-1.7105 0.5511] | 1.7971 | 1.7971 |
133 | [2.6311 1.9164] | 3.255 | 3.255 |
134 | [ 2.2836 -1.6275] | 2.8042 | 2.8042 |
135 | [2.5658 0.7233] | 2.6658 | 2.6658 |
136 | [ 2.8737 -1.4467] | 3.2173 | 3.2173 |
137 | [-1.7105 1.1711] | 2.073 | 2.073 |
138 | [-3.0789 0.1033] | 3.0807 | 3.0807 |
139 | [ 3.6415 -2.0054] | 4.1572 | 4.1572 |
140 | [0. 0.1033] | 0.1033 | 0.1033 |
141 | [2.0937 0.7027] | 2.2085 | 2.2085 |
142 | [-1.7105 -1.1711] | 2.073 | 2.073 |
143 | [-2.5316 -0.5511] | 2.5909 | 2.5909 |
144 | [0.2053 0.7233] | 0.7519 | 0.7519 |
145 | [-0.9237 -0.4133] | 1.0119 | 1.0119 |
146 | [ 1.0263 -0.7233] | 1.2556 | 1.2556 |
147 | [-1.3684 -0.6889] | 1.532 | 1.532 |
148 | [1.3342 0. ] | 1.3342 | 1.3342 |
149 | [-0.1026 -2.79 ] | 2.7919 | 2.7919 |
150 | [ 0.4105 -0.31 ] | 0.5144 | 0.5144 |
151 | [0.9237 2.2733] | 2.4538 | 2.4538 |
152 | [ 2.6684 -0.93 ] | 2.8258 | 2.8258 |
153 | [-1.7447 -1.55 ] | 2.3338 | 2.3338 |
154 | [0.7184 0.2067] | 0.7476 | 0.7476 |
155 | [-0.9237 0.2067] | 0.9465 | 0.9465 |
156 | [ 2.799 -2.0855] | 3.4905 | 3.4905 |
157 | [0.0684 1.5844] | 1.5859 | 1.5859 |
158 | [-0.9237 0.4133] | 1.0119 | 1.0119 |
159 | [ 1.3 -0.6889] | 1.4712 | 1.4712 |
160 | [-1.3684 -1.3778] | 1.9419 | 1.9419 |
161 | [-0.7184 -0.8267] | 1.0952 | 1.0952 |
162 | [-2.5658 -2.8704] | 3.85 | 3.85 |
163 | [-2.1211 -2.3652] | 3.1769 | 3.1769 |
164 | [-2.1992 1.6533] | 2.7514 | 2.7514 |
165 | [-1.3342 -0.2067] | 1.3501 | 1.3501 |
166 | [0.3421 1.7911] | 1.8235 | 1.8235 |
167 | [-0.5132 -0.4133] | 0.6589 | 0.6589 |
168 | [0.5474 1.3778] | 1.4825 | 1.4825 |
169 | [-1.8474 -0.1033] | 1.8503 | 1.8503 |
170 | [0.3079 0.4133] | 0.5154 | 0.5154 |
171 | [ 1.7242 -1.612 ] | 2.3604 | 2.3604 |
172 | [ 0.4105 -0.93 ] | 1.0166 | 1.0166 |
173 | [-1.0263 0.7233] | 1.2556 | 1.2556 |
174 | [-0.4105 0.31 ] | 0.5144 | 0.5144 |
175 | [2.8737 0.31 ] | 2.8904 | 2.8904 |
176 | [-1.5053 -2.7211] | 3.1097 | 3.1097 |
177 | [ 1.6216 -2.7797] | 3.2181 | 3.2181 |
178 | [-0.9579 -1.3778] | 1.678 | 1.678 |
179 | [-2.6684 -0.2583] | 2.6809 | 2.6809 |
180 | [1.5737 0.3444] | 1.6109 | 1.6109 |
181 | [-0.1368 -1.3089] | 1.316 | 1.316 |
182 | [1.7789 1.7567] | 2.5001 | 2.5001 |
183 | [-0.5337 1.9013] | 1.9748 | 1.9748 |
184 | [-1.3342 0.62 ] | 1.4712 | 1.4712 |
185 | [-0.3421 1.5844] | 1.621 | 1.621 |
186 | [-1.8474 0.31 ] | 1.8732 | 1.8732 |
187 | [1.5737 0.7578] | 1.7466 | 1.7466 |
188 | [-1.5189 -1.9013] | 2.4336 | 2.4336 |
189 | [ 1.3547 -1.488 ] | 2.0123 | 2.0123 |
190 | [-0.3519 -2.0667] | 2.0964 | 2.0964 |
191 | [-2.8326 1.86 ] | 3.3887 | 3.3887 |
192 | [-1.3342 0.2067] | 1.3501 | 1.3501 |
193 | [-1.2316 2.0667] | 2.4058 | 2.4058 |
194 | [-2.1553 0.7233] | 2.2734 | 2.2734 |
195 | [1.0947 1.5156] | 1.8696 | 1.8696 |
196 | [-0.3421 -1.5844] | 1.621 | 1.621 |
197 | [ 2.2168 -1.1573] | 2.5008 | 2.5008 |
198 | [-1.6421 0.1033] | 1.6454 | 1.6454 |
199 | [-0.5474 -1.3089] | 1.4187 | 1.4187 |
200 | [ 0.1026 -1.7567] | 1.7597 | 1.7597 |
201 | [ 1.9911 -2.1287] | 2.9147 | 2.9147 |
202 | [2.6428 1.2658] | 2.9303 | 2.9303 |
203 | [-1.3 0.8956] | 1.5786 | 1.5786 |
204 | [3.4024 2.5677] | 4.2625 | 4.2625 |
205 | [ 0.4789 -1.3089] | 1.3938 | 1.3938 |
206 | [-1.7789 0.8956] | 1.9917 | 1.9917 |
207 | [ 2.1895 -0.0689] | 2.1906 | 2.1906 |
208 | [-3.5361 -1.6815] | 3.9156 | 3.9156 |
209 | [-0.5474 1.3089] | 1.4187 | 1.4187 |
210 | [-0.7184 -0.2067] | 0.7476 | 0.7476 |
211 | [-0.2053 2.3767] | 2.3855 | 2.3855 |
212 | [-0.8895 -1.1022] | 1.4164 | 1.4164 |
213 | [-1.4882 2.8288] | 3.1963 | 3.1963 |
214 | [-2.1553 -0.93 ] | 2.3474 | 2.3474 |
215 | [0. 0.7233] | 0.7233 | 0.7233 |
- The (x,y) centers are plotted here, with the origin as the red star:
(x,y) centers with origin |
---|
![]() |
- I've also pulled out a few of the specific radii from the table above that are duplicated, and drew concentric circles at these radii. These lines intersect multiple points (or in some cases, are just very, very slightly off from the centers but virtually indistinguishable by eye):
- Note that the specific radii I've plotted are: [0.2298, 0.3718, 0.4233, 0.5144, 0.7184, 0.7233, 0.7476, 0.7519, 0.8288, 0.8317, 0.949 , 0.95 , 1.0119, 1.0315, 1.0384, 1.0942, 1.1537, 1.2556, 1.316 , 1.3289, 1.3342, 1.3501, 1.3968, 1.4164, 1.4187, 1.4712, 1.6109, 1.621 , 1.678 , 1.7044, 1.9917, 2.073 , 2.2734, 2.4366, 2.9875]
(x,y) centers with circles |
---|
![]() |
-
We can also spot check a few of the bins to see why they have identical radii.
- I think that these plots are a bit more clear -- I essentially went through and found which bins have identical radii (out to 4 decimal places), and plotted those with identical radii with a black outline.
- In these plots/in the table of numbers in the dropdown above, you can see that the symmetry comes from the bins having the same (x,y) centers up to a factor of -1, meaning that there is some symmetric voronoi strucutre sprinkled in with the asymmetric binning scheme.
-
There is no difference in the columns here, I just needed to create a 7x5 table for the repeated radii. The numbers are simply column indices:
1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
- We also wanted to see both the PAS and raw set of maps, which I've plotted here:
Raw | PAS | Model |
---|---|---|
![]() |
![]() |
![]() |
Unique Colors Radial Plot |
---|
![]() |
- I also added the mask over the first 9 pixels which had been absent from the previous iteration of the spectra plot. Here's an updated version:
Spectra |
---|
![]() |
-
Still running these and uploading the results soon!
-
We wanted to ensure that the V(R, Theta) results are robust to changes of bin size/number of bins included in each fit, so I have a few different set of results here exploring that sensitivity.
3 bins | 5 bins | 7 bins | 9 bins | |
---|---|---|---|---|
Raw Data | ![]() |
![]() |
![]() |
![]() |
Sym Data | ![]() |
![]() |
![]() |
![]() |
Model | ![]() |
![]() |
![]() |
![]() |
3 bins case: Tables of Fit Information
- Unsym data:
Bin Extent | V1 (km/s) | Phase (PA + V) | V0 (km/s) |
---|---|---|---|
R = ( 0.0" - 1.6") | 6.8 +/- 0.9 | 113.9 +/- 7.1 | 1.3 +/- 0.6 |
R = ( 1.4" - 3.3") | 7.1 +/- 0.7 | 97.6 +/- 5.6 | -0.8 +/- 0.5 |
R = ( 2.6" - 5.0") | 4.6 +/- 1.1 | 31.1 +/- 19.5 | -3.6 +/- 0.9 |
- Sym data:
Bin Extent | V1 (km/s) | Phase (PA + V) | V0 (km/s) |
---|---|---|---|
R = ( 0.0" - 1.6") | 5.5 +/- 0.9 | 108.1 +/- 8.9 | 0.0 +/- 0.6 |
R = ( 1.4" - 3.3") | 6.6 +/- 0.7 | 93.3 +/- 6.1 | 0.0 +/- 0.5 |
R = ( 2.6" - 5.0") | 4.8 +/- 1.1 | 61.7 +/- 18.3 | -0.4 +/- 0.9 |
- Model:
Bin Extent | V1 (km/s) | Phase (PA + V) | V0 (km/s) |
---|---|---|---|
R = ( 0.0" - 1.6") | 6.5 +/- 0.9 | 112.0 +/- 7.4 | -0.1 +/- 0.6 |
R = ( 1.4" - 3.3") | 7.1 +/- 0.7 | 96.5 +/- 5.6 | 0.1 +/- 0.5 |
R = ( 2.6" - 5.0") | 4.6 +/- 1.0 | 45.1 +/- 19.7 | -0.4 +/- 0.9 |
5 bins case: Tables of Fit Information
- Unsym data:
Bin Extent | V1 (km/s) | Phase (PA + V) | V0 (km/s) |
---|---|---|---|
R = ( 0.0" - 0.9") | 6.0 +/- 1.4 | 108.4 +/- 13.3 | 4.6 +/- 1.0 |
R = ( 0.8" - 1.9") | 6.1 +/- 0.9 | 120.0 +/- 8.2 | -0.7 +/- 0.6 |
R = ( 1.7" - 3.1") | 8.3 +/- 0.9 | 94.0 +/- 6.3 | -0.4 +/- 0.6 |
R = ( 2.4" - 3.7") | 4.9 +/- 1.2 | 74.7 +/- 15.0 | -3.3 +/- 0.9 |
R = ( 3.1" - 5.0") | 4.2 +/- 1.4 | 43.8 +/- 31.8 | -2.4 +/- 1.2 |
- Sym data:
Bin Extent | V1 (km/s) | Phase (PA + V) | V0 (km/s) |
---|---|---|---|
R = ( 0.0" - 0.9") | 5.6 +/- 1.3 | 95.4 +/- 14.3 | -0.0 +/- 1.0 |
R = ( 0.8" - 1.9") | 5.6 +/- 0.9 | 115.2 +/- 8.9 | 0.0 +/- 0.6 |
R = ( 1.7" - 3.1") | 7.1 +/- 0.9 | 89.4 +/- 7.5 | 0.1 +/- 0.6 |
R = ( 2.4" - 3.7") | 5.8 +/- 1.2 | 79.8 +/- 12.6 | -0.4 +/- 0.9 |
R = ( 3.1" - 5.0") | 4.0 +/- 1.5 | 52.6 +/- 33.3 | 0.0 +/- 1.2 |
- Model:
Bin Extent | V1 (km/s) | Phase (PA + V) | V0 (km/s) |
---|---|---|---|
R = ( 0.0" - 0.9") | 5.9 +/- 1.3 | 102.8 +/- 13.6 | 0.1 +/- 1.0 |
R = ( 0.8" - 1.9") | 6.1 +/- 0.9 | 119.6 +/- 8.2 | -0.0 +/- 0.6 |
R = ( 1.7" - 3.1") | 8.3 +/- 0.9 | 91.6 +/- 6.4 | 0.0 +/- 0.6 |
R = ( 2.4" - 3.7") | 5.5 +/- 1.2 | 80.9 +/- 13.3 | -0.5 +/- 0.9 |
R = ( 3.1" - 5.0") | 4.1 +/- 1.4 | 46.6 +/- 32.3 | 0.1 +/- 1.1 |
7 bins case: Tables of Fit Information
- Unsym data:
Bin Extent | V1 (km/s) | Phase (PA + V) | V0 (km/s) |
---|---|---|---|
R = ( 0.0" - 0.6") | 4.8 +/- 2.0 | 111.0 +/- 24.7 | 3.4 +/- 1.5 |
R = ( 0.6" - 1.3") | 6.9 +/- 1.2 | 100.6 +/- 9.8 | 2.1 +/- 0.8 |
R = ( 1.2" - 2.0") | 6.0 +/- 1.1 | 128.8 +/- 9.2 | -1.3 +/- 0.7 |
R = ( 1.8" - 2.8") | 8.3 +/- 1.0 | 88.7 +/- 7.2 | -0.9 +/- 0.7 |
R = ( 2.4" - 3.6") | 7.1 +/- 1.2 | 95.8 +/- 9.6 | -2.2 +/- 0.8 |
R = ( 2.8" - 4.4") | 5.4 +/- 1.8 | 6.0 +/- 21.3 | -2.5 +/- 1.2 |
R = ( 3.4" - 5.0") | 6.5 +/- 3.5 | 81.9 +/- 26.6 | -0.3 +/- 2.2 |
- Sym data:
Bin Extent | V1 (km/s) | Phase (PA + V) | V0 (km/s) |
---|---|---|---|
R = ( 0.0" - 0.6") | 4.4 +/- 2.0 | 96.5 +/- 27.1 | -0.2 +/- 1.5 |
R = ( 0.6" - 1.3") | 6.1 +/- 1.2 | 98.9 +/- 11.0 | -0.0 +/- 0.8 |
R = ( 1.2" - 2.0") | 5.7 +/- 1.1 | 117.0 +/- 9.9 | -0.2 +/- 0.7 |
R = ( 1.8" - 2.8") | 7.2 +/- 1.0 | 86.5 +/- 8.3 | 0.1 +/- 0.7 |
R = ( 2.4" - 3.6") | 6.5 +/- 1.2 | 90.2 +/- 10.8 | -0.6 +/- 0.8 |
R = ( 2.8" - 4.4") | 3.9 +/- 1.4 | 45.2 +/- 34.1 | 0.4 +/- 1.2 |
R = ( 3.4" - 5.0") | 4.5 +/- 2.7 | 46.6 +/- 48.6 | 0.5 +/- 2.2 |
- Model:
Bin Extent | V1 (km/s) | Phase (PA + V) | V0 (km/s) |
---|---|---|---|
R = ( 0.0" - 0.6") | 4.3 +/- 2.0 | 93.9 +/- 27.9 | -0.3 +/- 1.5 |
R = ( 0.6" - 1.3") | 7.1 +/- 1.2 | 100.4 +/- 9.5 | -0.1 +/- 0.8 |
R = ( 1.2" - 2.0") | 5.9 +/- 1.1 | 124.5 +/- 9.4 | -0.1 +/- 0.7 |
R = ( 1.8" - 2.8") | 8.0 +/- 1.1 | 90.2 +/- 7.5 | -0.1 +/- 0.7 |
R = ( 2.4" - 3.6") | 7.8 +/- 1.2 | 93.6 +/- 8.8 | -0.5 +/- 0.8 |
R = ( 2.8" - 4.4") | 4.2 +/- 1.7 | 10.9 +/- 28.4 | 0.5 +/- 1.2 |
R = ( 3.4" - 5.0") | 4.9 +/- 2.8 | 60.5 +/- 39.3 | 0.9 +/- 2.0 |
9 bins case: Tables of Fit Information
- Unsym data:
Bin Extent | V1 (km/s) | Phase (PA + V) | V0 (km/s) |
---|---|---|---|
R = ( 0.0" - 0.5") | 5.5 +/- 2.2 | 112.4 +/- 25.9 | 2.7 +/- 1.6 |
R = ( 0.5" - 1.1") | 7.8 +/- 1.5 | 105.2 +/- 10.9 | 4.4 +/- 1.1 |
R = ( 0.9" - 1.6") | 6.7 +/- 1.2 | 121.1 +/- 9.6 | -0.9 +/- 0.8 |
R = ( 1.4" - 2.2") | 6.1 +/- 1.2 | 102.0 +/- 11.4 | -2.0 +/- 0.9 |
R = ( 1.8" - 2.7") | 7.2 +/- 1.2 | 89.5 +/- 9.2 | 0.1 +/- 0.8 |
R = ( 2.3" - 3.3") | 8.6 +/- 1.4 | 105.7 +/- 8.2 | -0.6 +/- 0.9 |
R = ( 2.6" - 3.9") | 6.5 +/- 1.5 | 16.3 +/- 17.1 | -4.4 +/- 1.2 |
R = ( 3.1" - 4.5") | 4.0 +/- 3.4 | 114.3 +/- 37.3 | -3.4 +/- 1.7 |
R = ( 3.4" - 5.0") | 5.5 +/- 4.1 | 81.1 +/- 31.6 | -0.0 +/- 2.3 |
- Sym data:
Bin Extent | V1 (km/s) | Phase (PA + V) | V0 (km/s) |
---|---|---|---|
R = ( 0.0" - 0.5") | 4.0 +/- 2.2 | 100.0 +/- 35.6 | -0.4 +/- 1.6 |
R = ( 0.5" - 1.1") | 6.5 +/- 1.5 | 93.7 +/- 13.0 | 0.1 +/- 1.1 |
R = ( 0.9" - 1.6") | 5.5 +/- 1.2 | 119.0 +/- 11.6 | 0.0 +/- 0.8 |
R = ( 1.4" - 2.2") | 5.7 +/- 1.2 | 104.4 +/- 12.1 | -0.2 +/- 0.9 |
R = ( 1.8" - 2.7") | 7.5 +/- 1.2 | 86.8 +/- 8.8 | -0.0 +/- 0.8 |
R = ( 2.3" - 3.3") | 6.6 +/- 1.4 | 93.0 +/- 11.3 | 0.2 +/- 0.9 |
R = ( 2.6" - 3.9") | 5.7 +/- 1.5 | 63.3 +/- 19.6 | -0.3 +/- 1.2 |
R = ( 3.1" - 4.5") | 4.2 +/- 2.5 | 86.4 +/- 47.8 | -0.8 +/- 1.7 |
R = ( 3.4" - 5.0") | 4.1 +/- 3.0 | 41.7 +/- 58.5 | 0.7 +/- 2.3 |
- Model:
Bin Extent | V1 (km/s) | Phase (PA + V) | V0 (km/s) |
---|---|---|---|
R = ( 0.0" - 0.5") | 3.2 +/- 2.2 | 89.0 +/- 44.5 | -0.9 +/- 1.7 |
R = ( 0.5" - 1.1") | 8.0 +/- 1.5 | 103.6 +/- 10.7 | 0.2 +/- 1.1 |
R = ( 0.9" - 1.6") | 6.7 +/- 1.2 | 119.9 +/- 9.5 | -0.1 +/- 0.8 |
R = ( 1.4" - 2.2") | 6.0 +/- 1.2 | 101.7 +/- 11.7 | -0.5 +/- 0.9 |
R = ( 1.8" - 2.7") | 7.4 +/- 1.2 | 89.8 +/- 8.9 | 0.4 +/- 0.8 |
R = ( 2.3" - 3.3") | 8.2 +/- 1.4 | 101.7 +/- 8.7 | 0.2 +/- 0.9 |
R = ( 2.6" - 3.9") | 6.1 +/- 1.4 | 33.3 +/- 18.9 | -0.5 +/- 1.2 |
R = ( 3.1" - 4.5") | 5.0 +/- 3.4 | 117.0 +/- 27.6 | -0.6 +/- 1.6 |
R = ( 3.4" - 5.0") | 5.4 +/- 3.5 | 63.0 +/- 36.7 | 0.7 +/- 2.2 |
- I've also tried a few approaches in which I distribute the points equally into the shells. I've plotted the results for 10/20/25 below:
10 points | 20 points | 25 points | |
---|---|---|---|
Raw Data | ![]() |
![]() |
![]() |
Sym Data | ![]() |
![]() |
![]() |
Model | ![]() |
![]() |
![]() |
- And lastly, here's a few attempts where I am distributing the points sort of manually to get decent coverage in each "shell." I think that one of these might strike the right balance of point coverage for each shell, but it's essentially a trade off for whether or not we want the "corners" exlucded from either the outer most or second outermost shell. Regardless, as long as the bin choices are "reasonable," it seems like we're getting somewhat consistent results/trends:
Case 1 | Case 2 | |
---|---|---|
Raw Data | ![]() |
![]() |
Sym Data | ![]() |
![]() |
Model | ![]() |
![]() |
sym | unsym | model |
---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |