meeting 2023 06 06 - JacobPilawa/TriaxSchwarzschild_wiki_5 GitHub Wiki

Context

  • This is a quick update showing a quick set of results we discussed in the last meeting – specifically, this bullet tests selecting only "good fitting" models to be included in the chi2+Norb GPR + dynesty calculation.

  • In the past, we had been determining which models get selected based on the sum of (chi2+Norb), and then taking all models within some number $K$ from the minimum. I am now making this cut on the chi2 values alone (as if we were running a standard recovery test), and use those models with the correpsondign Norb to make these cuts.

  • I tried a few different quick tests, including changing the cutoff value used (for our normal recoveries, I use a K=40). For these tests, I tried both a K=30 and K=50, and it doesn't seem to make a difference. I also tried tuning the assumed error on the quantity chi2 + Norb up to error = 1.0, beyond which the errors are too large to make meaningful constraints.

  • In summary:

    • I have a few other tests I could still do for these results (look a bit more at the Norb surfaces near the minimum, or trying 1d axisymmetric tests) but simply including only well-fitting models doesn't seem to improve our GPR and dynesty routines. In these results, we still see that our GPR's are running away to the corners, and increasing the K further will start to include some even more problematic model points causing even more issues.

Plots

First, here are the 1d panels for the most extreme case that I tested. These panels show what is being fed into dynesty / GPR and represent the most extreme case tested, where I include models within a chi2 of 50 from the minimum, and then add in the average Norbs.
P1 P2 P3 P4 P5
r1 images/230606/1d_panels_valid_only_P1_r1_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png images/230606/1d_panels_valid_only_P2_r1_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png images/230606/1d_panels_valid_only_P3_r1_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png images/230606/1d_panels_valid_only_P4_r1_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png images/230606/1d_panels_valid_only_P5_r1_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png
r2 images/230606/1d_panels_valid_only_P1_r2_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png images/230606/1d_panels_valid_only_P2_r2_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png images/230606/1d_panels_valid_only_P3_r2_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png images/230606/1d_panels_valid_only_P4_r2_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png images/230606/1d_panels_valid_only_P5_r2_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png
r3 images/230606/1d_panels_valid_only_P1_r3_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png images/230606/1d_panels_valid_only_P2_r3_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png images/230606/1d_panels_valid_only_P3_r3_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png images/230606/1d_panels_valid_only_P4_r3_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png images/230606/1d_panels_valid_only_P5_r3_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png
r4 images/230606/1d_panels_valid_only_P1_r4_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png images/230606/1d_panels_valid_only_P2_r4_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png images/230606/1d_panels_valid_only_P3_r4_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png images/230606/1d_panels_valid_only_P4_r4_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png images/230606/1d_panels_valid_only_P5_r4_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png
r5 images/230606/1d_panels_valid_only_P1_r5_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png images/230606/1d_panels_valid_only_P2_r5_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png images/230606/1d_panels_valid_only_P3_r5_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png images/230606/1d_panels_valid_only_P4_r5_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png images/230606/1d_panels_valid_only_P5_r5_chi2_average_norb_sqrt_K80_error1.0_larger_cut.png
Cornerplots for K = 30, assumed error = 0.5
P1 P2 P3 P4 P5
r1 images/230606/valid_only_P1_r1_chi2_average_norb_sqrt_K80_error0.5-1.png images/230606/valid_only_P1_r2_chi2_average_norb_sqrt_K80_error0.5-1.png images/230606/valid_only_P1_r3_chi2_average_norb_sqrt_K80_error0.5-1.png images/230606/valid_only_P1_r4_chi2_average_norb_sqrt_K80_error0.5-1.png images/230606/valid_only_P1_r5_chi2_average_norb_sqrt_K80_error0.5-1.png
r2 images/230606/valid_only_P2_r1_chi2_average_norb_sqrt_K80_error0.5-1.png images/230606/valid_only_P2_r2_chi2_average_norb_sqrt_K80_error0.5-1.png images/230606/valid_only_P2_r3_chi2_average_norb_sqrt_K80_error0.5-1.png images/230606/valid_only_P2_r4_chi2_average_norb_sqrt_K80_error0.5-1.png images/230606/valid_only_P2_r5_chi2_average_norb_sqrt_K80_error0.5-1.png
r3 images/230606/valid_only_P3_r1_chi2_average_norb_sqrt_K80_error0.5-1.png images/230606/valid_only_P3_r2_chi2_average_norb_sqrt_K80_error0.5-1.png images/230606/valid_only_P3_r3_chi2_average_norb_sqrt_K80_error0.5-1.png images/230606/valid_only_P3_r4_chi2_average_norb_sqrt_K80_error0.5-1.png images/230606/valid_only_P3_r5_chi2_average_norb_sqrt_K80_error0.5-1.png
r4 images/230606/valid_only_P4_r1_chi2_average_norb_sqrt_K80_error0.5-1.png images/230606/valid_only_P4_r2_chi2_average_norb_sqrt_K80_error0.5-1.png images/230606/valid_only_P4_r3_chi2_average_norb_sqrt_K80_error0.5-1.png images/230606/valid_only_P4_r4_chi2_average_norb_sqrt_K80_error0.5-1.png images/230606/valid_only_P4_r5_chi2_average_norb_sqrt_K80_error0.5-1.png
r5 images/230606/valid_only_P5_r1_chi2_average_norb_sqrt_K80_error0.5-1.png images/230606/valid_only_P5_r2_chi2_average_norb_sqrt_K80_error0.5-1.png images/230606/valid_only_P5_r3_chi2_average_norb_sqrt_K80_error0.5-1.png images/230606/valid_only_P5_r4_chi2_average_norb_sqrt_K80_error0.5-1.png images/230606/valid_only_P5_r5_chi2_average_norb_sqrt_K80_error0.5-1.png
Cornerplots for K = 30, assumed error = 1.0
P1 P2 P3 P4 P5
r1 images/230606/valid_only_P1_r1_chi2_average_norb_sqrt_K80_error1.0-1.png images/230606/valid_only_P1_r2_chi2_average_norb_sqrt_K80_error1.0-1.png images/230606/valid_only_P1_r3_chi2_average_norb_sqrt_K80_error1.0-1.png images/230606/valid_only_P1_r4_chi2_average_norb_sqrt_K80_error1.0-1.png images/230606/valid_only_P1_r5_chi2_average_norb_sqrt_K80_error1.0-1.png
r2 images/230606/valid_only_P2_r1_chi2_average_norb_sqrt_K80_error1.0-1.png images/230606/valid_only_P2_r2_chi2_average_norb_sqrt_K80_error1.0-1.png images/230606/valid_only_P2_r3_chi2_average_norb_sqrt_K80_error1.0-1.png images/230606/valid_only_P2_r4_chi2_average_norb_sqrt_K80_error1.0-1.png images/230606/valid_only_P2_r5_chi2_average_norb_sqrt_K80_error1.0-1.png
r3 images/230606/valid_only_P3_r1_chi2_average_norb_sqrt_K80_error1.0-1.png images/230606/valid_only_P3_r2_chi2_average_norb_sqrt_K80_error1.0-1.png images/230606/valid_only_P3_r3_chi2_average_norb_sqrt_K80_error1.0-1.png images/230606/valid_only_P3_r4_chi2_average_norb_sqrt_K80_error1.0-1.png images/230606/valid_only_P3_r5_chi2_average_norb_sqrt_K80_error1.0-1.png
r4 images/230606/valid_only_P4_r1_chi2_average_norb_sqrt_K80_error1.0-1.png images/230606/valid_only_P4_r2_chi2_average_norb_sqrt_K80_error1.0-1.png images/230606/valid_only_P4_r3_chi2_average_norb_sqrt_K80_error1.0-1.png images/230606/valid_only_P4_r4_chi2_average_norb_sqrt_K80_error1.0-1.png images/230606/valid_only_P4_r5_chi2_average_norb_sqrt_K80_error1.0-1.png
r5 images/230606/valid_only_P5_r1_chi2_average_norb_sqrt_K80_error1.0-1.png images/230606/valid_only_P5_r2_chi2_average_norb_sqrt_K80_error1.0-1.png images/230606/valid_only_P5_r3_chi2_average_norb_sqrt_K80_error1.0-1.png images/230606/valid_only_P5_r4_chi2_average_norb_sqrt_K80_error1.0-1.png images/230606/valid_only_P5_r5_chi2_average_norb_sqrt_K80_error1.0-1.png
Cornerplots for K = 50, assumed error = 1.0
P1 P2 P3 P4 P5
r1 images/230606/valid_only_P1_r1_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png images/230606/valid_only_P1_r2_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png images/230606/valid_only_P1_r3_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png images/230606/valid_only_P1_r4_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png images/230606/valid_only_P1_r5_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png
r2 images/230606/valid_only_P2_r1_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png images/230606/valid_only_P2_r2_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png images/230606/valid_only_P2_r3_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png images/230606/valid_only_P2_r4_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png images/230606/valid_only_P2_r5_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png
r3 images/230606/valid_only_P3_r1_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png images/230606/valid_only_P3_r2_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png images/230606/valid_only_P3_r3_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png images/230606/valid_only_P3_r4_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png images/230606/valid_only_P3_r5_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png
r4 images/230606/valid_only_P4_r1_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png images/230606/valid_only_P4_r2_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png images/230606/valid_only_P4_r3_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png images/230606/valid_only_P4_r4_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png images/230606/valid_only_P4_r5_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png
r5 images/230606/valid_only_P5_r1_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png images/230606/valid_only_P5_r2_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png images/230606/valid_only_P5_r3_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png images/230606/valid_only_P5_r4_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png images/230606/valid_only_P5_r5_chi2_average_norb_sqrt_K80_error1.0_larger_cut-1.png
⚠️ **GitHub.com Fallback** ⚠️