WebNN Operators - Honry/onnxruntime GitHub Wiki

Operators Support Table

The following table shows ONNX operators and the supported opset domain/versions in WebNN EP by ONNX Runtime Web. For example, 7-12, 13+ means ONNX Runtime Web currently supports opset version 7 to 12, 13 and above.

(Note: ONNX Runtime only guarantees support for models stamped with opset version 7 or above for opset domain 'ai.onnx'.)

WebNN API provides two device types cpu and gpu to leverage different on-device accelerators. WebNN API implementation in Chromium uses XNNPack backend for cpu device type and DirectML backend for gpu device type. The op support status behind these two backends is inconsistent since XNNPack backend currently supports limited op scope.

Operator Opset WebNN API WebNN CPU WebNN GPU Comments
Abs ai.onnx(7-12, 13+) abs
Add ai.onnx(7-12, 13, 14+) add
ArgMax ai.onnx(7-10, 11, 12, 13+) argMax
ArgMin ai.onnx(7-10, 11, 12, 13+) argMin
AveragePool ai.onnx(7-9, 10, 11, 12-18, 19+) averagePool2d Only supports 4-D input, 2-D 'kernel_shape', 'count_include_pad' value is 0
BatchNormalization ai.onnx(7-8, 9-13, 14, 15+) batchNormalization Only supports 'training_mode' value is 0, one output
Cast ai.onnx(7-8, 9-12, 13-18, 19-20, 21+) cast
Ceil ai.onnx(7-12, 13+) ceil
Clip ai.onnx(7-10, 11, 12, 13+) clamp
Concat ai.onnx(7-10, 11-12, 13+) concat
Conv ai.onnx(7-10, 11+) conv2d Only supports 3-D or 4-D input and 'W' (weight). WebNN CPU requires the 'W' (weight) input to be a constant.
ConvInteger ai.onnx(10+) conv2dInteger Only supports 3-D or 4-D input and 'W' (weight).
ConvTranspose ai.onnx(7-10, 11+) convTranspose2d Only supports 3-D or 4-D input and 'W' (weight). WebNN CPU requires the 'W' (weight) input to be a constant.
Cos ai.onnx(7+) cos
Div ai.onnx(7-12, 13, 14+) div
DequantizeLinear ai.onnx(10-12, 13-18, 19-20, 21+) dequantizeLinear
DynamicQuantizeLinear ai.onnx(11+) dynamicQuantizeLinear
Elu ai.onnx(7+) elu
Equal ai.onnx(7-10, 11-12, 13-18, 19+) equal
Erf ai.onnx(7-9, 10-12, 13+) erf
Exp ai.onnx(7-12, 13+) exp
Expand ai.onnx(8-12, 13+) expand 'shape' input should be a constant.
Flatten ai.onnx(7-8, 9-10, 11-12, 13-20, 21+) reshape
Floor ai.onnx(7-12, 13+) floor
Gather ai.onnx(7-10, 11-12, 13+) gather
Gemm ai.onnx(7-8, 9-10, 11-12, 13+) gemm Only supports 1-D 'C' input
GlobalAveragePool ai.onnx(7+) averagePool2d Only supports 4-D input
GlobalMaxPool ai.onnx(7+) maxPool2d Only supports 4-D input
GlobalLpPool ai.onnx(7+) l2Pool2d Only supports 4-D input, 'p' value is 2
Greater ai.onnx(7-8, 9-12, 13+) greater
GreaterOrEqual ai.onnx(12-15, 16+) greaterOrEqual
HardSigmoid ai.onnx(7+) hardSigmoid
HardSwish ai.onnx(14+) hardSwish
Identity ai.onnx(7-13, 14-15, 16-18, 19-20, 21+) identity
InstanceNormalization ai.onnx(7+) instanceNormalization
LayerNormalization ai.onnx(7-16, 17+) layerNormalization
LeakyRelu ai.onnx(7-15, 16+) leakyRelu
Less ai.onnx(7-8, 9-12, 13+) lesser
LessOrEqual ai.onnx(12-15, 16+) lesserOrEqual
Log ai.onnx(7-12, 13+) log
LpPool ai.onnx(7-10, 11-17, 18+) l2Pool2d Only supports 4-D input, 2-D 'kernel_shape', 'p' value is 2
MatMul ai.onnx(7-8, 9-12, 13+) matmul WebNN CPU doesn't support broadcasting for MatMul
MatMulInteger ai.onnx(10+) matmulInteger
Max ai.onnx(7, 8-11, 12, 13+) max
MaxPool ai.onnx(7, 8-9, 10, 11, 12+) maxPool2d Only supports 4-D input, 2-D 'kernel_shape', 'storage_order' != 1, one output
Min ai.onnx(7, 8-11, 12, 13+) min
Mul ai.onnx(7-12, 13, 14+) mul
Neg ai.onnx(7-12, 13+) neg
Not ai.onnx(7+) logicalnot
Pad ai.onnx(7-10, 11-12, 13-17, 18, 19-20, 21+) pad modes == 'wrap' is not supported
Pow ai.onnx(7-11, 12, 13-14, 15+) pow
PRelu ai.onnx(7-8, 9-15, 16+) prelu WebNN CPU restricts slope to be a static value
Reciprocal ai.onnx(7-12, 13+) reciprocal
ReduceL1 ai.onnx(7-10, 11-12, 13-17, 18+) reduceL1 Input 'axes' if present should be a constant
ReduceL2 ai.onnx(7-10, 11-12, 13-17, 18+) reduceL2 Input 'axes' if present should be a constant
ReduceLogSum ai.onnx(7-10, 11-12, 13-17, 18+) reduceLogSum Input 'axes' if present should be a constant
ReduceLogSumExp ai.onnx(7-10, 11-12, 13-17, 18+) reduceLogSumExp Input 'axes' if present should be a constant
ReduceMax ai.onnx(7-10, 11, 12, 13-17, 18-19, 20+) reduceMax Input 'axes' if present should be a constant
ReduceMean ai.onnx(7-10, 11-12, 13-17, 18+) reduceMean Input 'axes' if present should be a constant
ReduceMin ai.onnx(7-10, 11, 12, 13-17, 18-19, 20+) reduceMin Input 'axes' if present should be a constant
ReduceProd ai.onnx(7-10, 11-12, 13-17, 18+) reduceProduct Input 'axes' if present should be a constant
ReduceSum ai.onnx(7-10, 11-12, 13+) reduceSum Input 'axes' if present should be a constant
ReduceSumSquare ai.onnx(7-10, 11-12, 13-17, 18+) reduceSumSquare Input 'axes' if present should be a constant
Relu ai.onnx(7-12, 13, 14+) relu
Reshape ai.onnx(7-12, 13, 14-18, 19-20, 21+) reshape Input 'shape' should be a constant, 0 dimension value in 'shape' is not supported
Resize ai.onnx(11-12, 13-17, 18, 19+) resample2d Only supports 4-D input, exclude_outside !=0, input 'scales' and 'sizes' if present must be a constant, WebNN CPU backend only supports 'linear' mode, WebNN GPU backend only supports 'linear' and 'nearest' modes
Shape ai.onnx(7-12, 13-14, 15-18, 19-20, 21+) slice
Sigmoid ai.onnx(7-12, 13+) sigmoid
Softplus ai.onnx(7+) softplus
Softsign ai.onnx(7+) softsign
Sin ai.onnx(7+) sin
Slice ai.onnx(7-9, 10, 11-12, 13+) slice Input 'starts', 'ends', 'axes', and 'steps' if present must be a constant, only supports 'steps' value 1
Softmax ai.onnx(7-10, 11-12, 13+) softmax Only supports input rank >= 2
Split ai.onnx(7-10, 11-12, 13-17, 18+) split Input 'split' if present should be a constant
Sqrt ai.onnx(7-12, 13+) sqrt
Squeeze ai.onnx(7-10, 11-12, 13-20, 21+) reshape Input 'axes' if present should be a constant
Sub ai.onnx(7-12, 13, 14+) sub
Tan ai.onnx(7+) tan
Tanh ai.onnx(7-12, 13+) tanh
Transpose ai.onnx(7-12, 13-20, 21+) transpose
Unsqueeze ai.onnx(7-10, 11-12, 13-20, 21+) reshape
Where ai.onnx(7-8, 9-15, 16+) where