weightedMean - HenrikBengtsson/matrixStats GitHub Wiki
matrixStats: Benchmark report
This report benchmark the performance of weightedMean() against alternative methods.
- stats::weighted.mean()
- stats:::weighted.mean.default()
> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rvector(n = scale * 100, ...)
+     data[[2]] <- rvector(n = scale * 1000, ...)
+     data[[3]] <- rvector(n = scale * 10000, ...)
+     data[[4]] <- rvector(n = scale * 1e+05, ...)
+     data[[5]] <- rvector(n = scale * 1e+06, ...)
+     names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+     data
+ }
> data <- rvectors(mode = mode)
> data <- data[1:4]> x <- data[["n = 1000"]]
> w <- runif(length(x))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  3253690 173.8    5709258 305.0  5709258 305.0
Vcells 10683390  81.6   32912165 251.1 87357391 666.5
> stats <- microbenchmark(weightedMean = weightedMean(x, w = w, na.rm = FALSE), `stats::weighted.mean` = weighted.mean(x, 
+     w = w, na.rm = FALSE), `stats:::weighted.mean.default` = weighted.mean.default(x, w = w, na.rm = FALSE), 
+     unit = "ms")Table: Benchmarking of weightedMean(), stats::weighted.mean() and stats:::weighted.mean.default() on integer+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | weightedMean | 0.001799 | 0.0019990 | 0.0022183 | 0.0021315 | 0.0022670 | 0.010164 | 
| 3 | stats:::weighted.mean.default | 0.007978 | 0.0086310 | 0.0091380 | 0.0089075 | 0.0092150 | 0.017101 | 
| 2 | stats::weighted.mean | 0.010164 | 0.0109585 | 0.0117989 | 0.0112575 | 0.0115765 | 0.050782 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | weightedMean | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 3 | stats:::weighted.mean.default | 4.434686 | 4.317659 | 4.119407 | 4.178982 | 4.064843 | 1.682507 | 
| 2 | stats::weighted.mean | 5.649805 | 5.481991 | 5.318930 | 5.281492 | 5.106528 | 4.996261 | 
Figure: Benchmarking of weightedMean(), stats::weighted.mean() and stats:::weighted.mean.default() on integer+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.

> x <- data[["n = 10000"]]
> w <- runif(length(x))
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3251465 173.7    5709258 305.0  5709258 305.0
Vcells 6807038  52.0   26329732 200.9 87357391 666.5
> stats <- microbenchmark(weightedMean = weightedMean(x, w = w, na.rm = FALSE), `stats::weighted.mean` = weighted.mean(x, 
+     w = w, na.rm = FALSE), `stats:::weighted.mean.default` = weighted.mean.default(x, w = w, na.rm = FALSE), 
+     unit = "ms")Table: Benchmarking of weightedMean(), stats::weighted.mean() and stats:::weighted.mean.default() on integer+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | weightedMean | 0.011350 | 0.0115630 | 0.0119662 | 0.0118160 | 0.0119335 | 0.022352 | 
| 3 | stats:::weighted.mean.default | 0.059287 | 0.0609965 | 0.0631667 | 0.0617805 | 0.0634735 | 0.105014 | 
| 2 | stats::weighted.mean | 0.062161 | 0.0633895 | 0.0657534 | 0.0642060 | 0.0657900 | 0.095198 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | weightedMean | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 3 | stats:::weighted.mean.default | 5.223524 | 5.275145 | 5.278744 | 5.228546 | 5.318934 | 4.698193 | 
| 2 | stats::weighted.mean | 5.476740 | 5.482098 | 5.494913 | 5.433819 | 5.513052 | 4.259037 | 
Figure: Benchmarking of weightedMean(), stats::weighted.mean() and stats:::weighted.mean.default() on integer+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.

> x <- data[["n = 100000"]]
> w <- runif(length(x))
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3251537 173.7    5709258 305.0  5709258 305.0
Vcells 6897598  52.7   26329732 200.9 87357391 666.5
> stats <- microbenchmark(weightedMean = weightedMean(x, w = w, na.rm = FALSE), `stats::weighted.mean` = weighted.mean(x, 
+     w = w, na.rm = FALSE), `stats:::weighted.mean.default` = weighted.mean.default(x, w = w, na.rm = FALSE), 
+     unit = "ms")Table: Benchmarking of weightedMean(), stats::weighted.mean() and stats:::weighted.mean.default() on integer+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | weightedMean | 0.104369 | 0.108219 | 0.1186231 | 0.1164295 | 0.1246330 | 0.147534 | 
| 3 | stats:::weighted.mean.default | 0.598650 | 0.627936 | 0.7646579 | 0.6632800 | 0.7220650 | 6.491542 | 
| 2 | stats::weighted.mean | 0.612813 | 0.641460 | 0.8342262 | 0.6877985 | 0.7376575 | 6.687976 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | weightedMean | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 
| 3 | stats:::weighted.mean.default | 5.735899 | 5.802456 | 6.446112 | 5.696838 | 5.793530 | 44.00031 | 
| 2 | stats::weighted.mean | 5.871600 | 5.927425 | 7.032577 | 5.907425 | 5.918637 | 45.33176 | 
Figure: Benchmarking of weightedMean(), stats::weighted.mean() and stats:::weighted.mean.default() on integer+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.

> x <- data[["n = 1000000"]]
> w <- runif(length(x))
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3251609 173.7    5709258 305.0  5709258 305.0
Vcells 7797647  59.5   26329732 200.9 87357391 666.5
> stats <- microbenchmark(weightedMean = weightedMean(x, w = w, na.rm = FALSE), `stats::weighted.mean` = weighted.mean(x, 
+     w = w, na.rm = FALSE), `stats:::weighted.mean.default` = weighted.mean.default(x, w = w, na.rm = FALSE), 
+     unit = "ms")Table: Benchmarking of weightedMean(), stats::weighted.mean() and stats:::weighted.mean.default() on integer+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | weightedMean | 1.071714 | 1.250920 | 1.331716 | 1.336521 | 1.394437 | 1.857999 | 
| 3 | stats:::weighted.mean.default | 6.385673 | 7.282114 | 12.330859 | 7.765860 | 13.345553 | 269.733846 | 
| 2 | stats::weighted.mean | 6.654515 | 7.435343 | 12.565293 | 7.879948 | 13.545939 | 266.984058 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | weightedMean | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000 | 
| 3 | stats:::weighted.mean.default | 5.958374 | 5.821407 | 9.259373 | 5.810503 | 9.570567 | 145.1744 | 
| 2 | stats::weighted.mean | 6.209226 | 5.943900 | 9.435413 | 5.895865 | 9.714271 | 143.6944 | 
Figure: Benchmarking of weightedMean(), stats::weighted.mean() and stats:::weighted.mean.default() on integer+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.

> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rvector(n = scale * 100, ...)
+     data[[2]] <- rvector(n = scale * 1000, ...)
+     data[[3]] <- rvector(n = scale * 10000, ...)
+     data[[4]] <- rvector(n = scale * 1e+05, ...)
+     data[[5]] <- rvector(n = scale * 1e+06, ...)
+     names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+     data
+ }
> data <- rvectors(mode = mode)
> data <- data[1:4]> x <- data[["n = 1000"]]
> w <- runif(length(x))
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3251681 173.7    5709258 305.0  5709258 305.0
Vcells 7354677  56.2   26329732 200.9 87357391 666.5
> stats <- microbenchmark(weightedMean = weightedMean(x, w = w, na.rm = FALSE), `stats::weighted.mean` = weighted.mean(x, 
+     w = w, na.rm = FALSE), `stats:::weighted.mean.default` = weighted.mean.default(x, w = w, na.rm = FALSE), 
+     unit = "ms")Table: Benchmarking of weightedMean(), stats::weighted.mean() and stats:::weighted.mean.default() on double+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | weightedMean | 0.001873 | 0.002131 | 0.0023838 | 0.0023080 | 0.0024775 | 0.009741 | 
| 3 | stats:::weighted.mean.default | 0.007760 | 0.008604 | 0.0090266 | 0.0088345 | 0.0091680 | 0.013523 | 
| 2 | stats::weighted.mean | 0.010181 | 0.010803 | 0.0115920 | 0.0111110 | 0.0114995 | 0.047691 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | weightedMean | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 3 | stats:::weighted.mean.default | 4.143086 | 4.037541 | 3.786587 | 3.827773 | 3.700505 | 1.388256 | 
| 2 | stats::weighted.mean | 5.435665 | 5.069451 | 4.862771 | 4.814125 | 4.641574 | 4.895904 | 
Figure: Benchmarking of weightedMean(), stats::weighted.mean() and stats:::weighted.mean.default() on double+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.

> x <- data[["n = 10000"]]
> w <- runif(length(x))
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3251753 173.7    5709258 305.0  5709258 305.0
Vcells 7363724  56.2   26329732 200.9 87357391 666.5
> stats <- microbenchmark(weightedMean = weightedMean(x, w = w, na.rm = FALSE), `stats::weighted.mean` = weighted.mean(x, 
+     w = w, na.rm = FALSE), `stats:::weighted.mean.default` = weighted.mean.default(x, w = w, na.rm = FALSE), 
+     unit = "ms")Table: Benchmarking of weightedMean(), stats::weighted.mean() and stats:::weighted.mean.default() on double+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | weightedMean | 0.011454 | 0.0116345 | 0.0125948 | 0.0119475 | 0.0137065 | 0.020861 | 
| 3 | stats:::weighted.mean.default | 0.054687 | 0.0560620 | 0.0588038 | 0.0570060 | 0.0587000 | 0.094116 | 
| 2 | stats::weighted.mean | 0.057985 | 0.0591660 | 0.0613805 | 0.0597465 | 0.0610195 | 0.091445 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | weightedMean | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 3 | stats:::weighted.mean.default | 4.774489 | 4.818600 | 4.668873 | 4.771375 | 4.282640 | 4.511577 | 
| 2 | stats::weighted.mean | 5.062424 | 5.085393 | 4.873457 | 5.000753 | 4.451866 | 4.383539 | 
Figure: Benchmarking of weightedMean(), stats::weighted.mean() and stats:::weighted.mean.default() on double+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.

> x <- data[["n = 100000"]]
> w <- runif(length(x))
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3251825 173.7    5709258 305.0  5709258 305.0
Vcells 7454142  56.9   26329732 200.9 87357391 666.5
> stats <- microbenchmark(weightedMean = weightedMean(x, w = w, na.rm = FALSE), `stats::weighted.mean` = weighted.mean(x, 
+     w = w, na.rm = FALSE), `stats:::weighted.mean.default` = weighted.mean.default(x, w = w, na.rm = FALSE), 
+     unit = "ms")Table: Benchmarking of weightedMean(), stats::weighted.mean() and stats:::weighted.mean.default() on double+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | weightedMean | 0.104343 | 0.1205490 | 0.1331922 | 0.1317125 | 0.1415450 | 0.176506 | 
| 3 | stats:::weighted.mean.default | 0.573308 | 0.6238395 | 0.8089427 | 0.6603815 | 0.7104230 | 6.749770 | 
| 2 | stats::weighted.mean | 0.577805 | 0.6358815 | 0.7690570 | 0.6812455 | 0.7217285 | 7.441084 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | weightedMean | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.00000 | 
| 3 | stats:::weighted.mean.default | 5.494456 | 5.174987 | 6.07350 | 5.013810 | 5.019061 | 38.24102 | 
| 2 | stats::weighted.mean | 5.537554 | 5.274880 | 5.77404 | 5.172216 | 5.098933 | 42.15768 | 
Figure: Benchmarking of weightedMean(), stats::weighted.mean() and stats:::weighted.mean.default() on double+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.

> x <- data[["n = 1000000"]]
> w <- runif(length(x))
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3251897 173.7    5709258 305.0  5709258 305.0
Vcells 8354578  63.8   26329732 200.9 87357391 666.5
> stats <- microbenchmark(weightedMean = weightedMean(x, w = w, na.rm = FALSE), `stats::weighted.mean` = weighted.mean(x, 
+     w = w, na.rm = FALSE), `stats:::weighted.mean.default` = weighted.mean.default(x, w = w, na.rm = FALSE), 
+     unit = "ms")Table: Benchmarking of weightedMean(), stats::weighted.mean() and stats:::weighted.mean.default() on double+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | weightedMean | 1.186222 | 1.385917 | 1.475081 | 1.441063 | 1.503171 | 2.267329 | 
| 2 | stats::weighted.mean | 6.686669 | 7.629785 | 9.613018 | 7.811571 | 9.362951 | 21.811615 | 
| 3 | stats:::weighted.mean.default | 6.488990 | 7.586513 | 9.028397 | 7.840875 | 8.884047 | 17.437721 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | weightedMean | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | stats::weighted.mean | 5.636946 | 5.505223 | 6.516942 | 5.420701 | 6.228800 | 9.619960 | 
| 3 | stats:::weighted.mean.default | 5.470300 | 5.474000 | 6.120610 | 5.441035 | 5.910203 | 7.690865 | 
Figure: Benchmarking of weightedMean(), stats::weighted.mean() and stats:::weighted.mean.default() on double+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.

R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS:   /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
other attached packages:
[1] microbenchmark_1.4-6    matrixStats_0.55.0-9000 ggplot2_3.2.1          
[4] knitr_1.24              R.devices_2.16.0        R.utils_2.9.0          
[7] R.oo_1.22.0             R.methodsS3_1.7.1       history_0.0.0-9002     
loaded via a namespace (and not attached):
 [1] Biobase_2.45.0       bit64_0.9-7          splines_3.6.1       
 [4] network_1.15         assertthat_0.2.1     highr_0.8           
 [7] stats4_3.6.1         blob_1.2.0           robustbase_0.93-5   
[10] pillar_1.4.2         RSQLite_2.1.2        backports_1.1.4     
[13] lattice_0.20-38      glue_1.3.1           digest_0.6.20       
[16] colorspace_1.4-1     sandwich_2.5-1       Matrix_1.2-17       
[19] XML_3.98-1.20        lpSolve_5.6.13.3     pkgconfig_2.0.2     
[22] genefilter_1.66.0    purrr_0.3.2          ergm_3.10.4         
[25] xtable_1.8-4         mvtnorm_1.0-11       scales_1.0.0        
[28] tibble_2.1.3         annotate_1.62.0      IRanges_2.18.2      
[31] TH.data_1.0-10       withr_2.1.2          BiocGenerics_0.30.0 
[34] lazyeval_0.2.2       mime_0.7             survival_2.44-1.1   
[37] magrittr_1.5         crayon_1.3.4         statnet.common_4.3.0
[40] memoise_1.1.0        laeken_0.5.0         R.cache_0.13.0      
[43] MASS_7.3-51.4        R.rsp_0.43.1         tools_3.6.1         
[46] multcomp_1.4-10      S4Vectors_0.22.1     trust_0.1-7         
[49] munsell_0.5.0        AnnotationDbi_1.46.1 compiler_3.6.1      
[52] rlang_0.4.0          grid_3.6.1           RCurl_1.95-4.12     
[55] cwhmisc_6.6          rappdirs_0.3.1       labeling_0.3        
[58] bitops_1.0-6         base64enc_0.1-3      boot_1.3-23         
[61] gtable_0.3.0         codetools_0.2-16     DBI_1.0.0           
[64] markdown_1.1         R6_2.4.0             zoo_1.8-6           
[67] dplyr_0.8.3          bit_1.1-14           zeallot_0.1.0       
[70] parallel_3.6.1       Rcpp_1.0.2           vctrs_0.2.0         
[73] DEoptimR_1.0-8       tidyselect_0.2.5     xfun_0.9            
[76] coda_0.19-3         Total processing time was 15.42 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('weightedMean')Copyright Henrik Bengtsson. Last updated on 2019-09-10 21:14:44 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>