varDiff - HenrikBengtsson/matrixStats GitHub Wiki
matrixStats: Benchmark report
This report benchmark the performance of varDiff() against alternative methods.
- N/A
> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rvector(n = scale * 100, ...)
+     data[[2]] <- rvector(n = scale * 1000, ...)
+     data[[3]] <- rvector(n = scale * 10000, ...)
+     data[[4]] <- rvector(n = scale * 1e+05, ...)
+     data[[5]] <- rvector(n = scale * 1e+06, ...)
+     names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+     data
+ }
> data <- rvectors(mode = mode)
> data <- data[1:4]> x <- data[["n = 1000"]]
> stats <- microbenchmark(varDiff = varDiff(x), var = var(x), diff = diff(x), unit = "ms")Table: Benchmarking of varDiff(), var() and diff() on integer+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 0.009196 | 0.0096955 | 0.0103208 | 0.0098975 | 0.0103485 | 0.041973 | 
| 3 | diff | 0.011785 | 0.0125135 | 0.0137085 | 0.0131970 | 0.0139860 | 0.040098 | 
| 1 | varDiff | 0.012780 | 0.0135215 | 0.0141981 | 0.0139610 | 0.0144280 | 0.032514 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 3 | diff | 1.281535 | 1.290650 | 1.328243 | 1.333367 | 1.351500 | 0.9553284 | 
| 1 | varDiff | 1.389735 | 1.394616 | 1.375682 | 1.410558 | 1.394212 | 0.7746408 | 
Figure: Benchmarking of varDiff(), var() and diff() on integer+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.

> x <- data[["n = 10000"]]
> stats <- microbenchmark(varDiff = varDiff(x), var = var(x), diff = diff(x), unit = "ms")Table: Benchmarking of varDiff(), var() and diff() on integer+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 0.045200 | 0.0465395 | 0.0477511 | 0.0469645 | 0.0477805 | 0.079852 | 
| 1 | varDiff | 0.057211 | 0.0583670 | 0.0600053 | 0.0591335 | 0.0604620 | 0.086723 | 
| 3 | diff | 0.099175 | 0.1013915 | 0.1043614 | 0.1026815 | 0.1048740 | 0.140382 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 1 | varDiff | 1.265730 | 1.254139 | 1.256627 | 1.259111 | 1.265412 | 1.086047 | 
| 3 | diff | 2.194137 | 2.178612 | 2.185531 | 2.186364 | 2.194912 | 1.758027 | 
Figure: Benchmarking of varDiff(), var() and diff() on integer+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.

> x <- data[["n = 100000"]]
> stats <- microbenchmark(varDiff = varDiff(x), var = var(x), diff = diff(x), unit = "ms")Table: Benchmarking of varDiff(), var() and diff() on integer+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 0.383199 | 0.396390 | 0.4407531 | 0.4204120 | 0.4543865 | 0.608532 | 
| 1 | varDiff | 0.463319 | 0.487432 | 0.5980133 | 0.5089645 | 0.5516310 | 6.296745 | 
| 3 | diff | 0.888659 | 0.923009 | 1.1508867 | 0.9727050 | 1.0786070 | 7.790968 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 
| 1 | varDiff | 1.209082 | 1.229678 | 1.356799 | 1.210633 | 1.214013 | 10.34743 | 
| 3 | diff | 2.319053 | 2.328538 | 2.611182 | 2.313695 | 2.373766 | 12.80289 | 
Figure: Benchmarking of varDiff(), var() and diff() on integer+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.

> x <- data[["n = 1000000"]]
> stats <- microbenchmark(varDiff = varDiff(x), var = var(x), diff = diff(x), unit = "ms")Table: Benchmarking of varDiff(), var() and diff() on integer+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 4.041583 | 4.288999 | 5.469295 | 4.622446 | 5.887681 | 14.62338 | 
| 1 | varDiff | 4.843936 | 5.389989 | 6.739284 | 5.786107 | 7.697941 | 14.49699 | 
| 3 | diff | 9.188005 | 10.093262 | 15.969191 | 11.128606 | 17.095768 | 274.79025 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 1 | varDiff | 1.198524 | 1.256701 | 1.232204 | 1.251741 | 1.307466 | 0.9913573 | 
| 3 | diff | 2.273368 | 2.353291 | 2.919790 | 2.407514 | 2.903651 | 18.7911624 | 
Figure: Benchmarking of varDiff(), var() and diff() on integer+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.

> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rvector(n = scale * 100, ...)
+     data[[2]] <- rvector(n = scale * 1000, ...)
+     data[[3]] <- rvector(n = scale * 10000, ...)
+     data[[4]] <- rvector(n = scale * 1e+05, ...)
+     data[[5]] <- rvector(n = scale * 1e+06, ...)
+     names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+     data
+ }
> data <- rvectors(mode = mode)
> data <- data[1:4]> x <- data[["n = 1000"]]
> stats <- microbenchmark(varDiff = varDiff(x), var = var(x), diff = diff(x), unit = "ms")Table: Benchmarking of varDiff(), var() and diff() on double+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 0.008009 | 0.0083305 | 0.0090801 | 0.0085575 | 0.0092100 | 0.038115 | 
| 3 | diff | 0.011062 | 0.0120450 | 0.0130484 | 0.0125550 | 0.0131955 | 0.039849 | 
| 1 | varDiff | 0.011718 | 0.0123075 | 0.0131388 | 0.0126810 | 0.0135545 | 0.030608 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 3 | diff | 1.381196 | 1.445892 | 1.437032 | 1.467134 | 1.432736 | 1.0454939 | 
| 1 | varDiff | 1.463104 | 1.477402 | 1.446985 | 1.481858 | 1.471715 | 0.8030434 | 
Figure: Benchmarking of varDiff(), var() and diff() on double+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.

> x <- data[["n = 10000"]]
> stats <- microbenchmark(varDiff = varDiff(x), var = var(x), diff = diff(x), unit = "ms")Table: Benchmarking of varDiff(), var() and diff() on double+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 0.035529 | 0.0358335 | 0.0367964 | 0.0361120 | 0.0370675 | 0.068853 | 
| 1 | varDiff | 0.045229 | 0.0459790 | 0.0475691 | 0.0465260 | 0.0474675 | 0.079934 | 
| 3 | diff | 0.052307 | 0.0550845 | 0.0587569 | 0.0562325 | 0.0621470 | 0.091947 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 1 | varDiff | 1.273016 | 1.283129 | 1.292764 | 1.288381 | 1.280569 | 1.160937 | 
| 3 | diff | 1.472234 | 1.537235 | 1.596808 | 1.557169 | 1.676590 | 1.335410 | 
Figure: Benchmarking of varDiff(), var() and diff() on double+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.

> x <- data[["n = 100000"]]
> stats <- microbenchmark(varDiff = varDiff(x), var = var(x), diff = diff(x), unit = "ms")Table: Benchmarking of varDiff(), var() and diff() on double+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 0.305579 | 0.3103610 | 0.3373515 | 0.3252020 | 0.3630905 | 0.420421 | 
| 1 | varDiff | 0.387143 | 0.4148355 | 0.4605390 | 0.4550165 | 0.4769440 | 0.621061 | 
| 3 | diff | 0.488172 | 0.5153175 | 0.9228420 | 0.5699755 | 0.6264650 | 7.441260 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 1 | varDiff | 1.266916 | 1.336623 | 1.365161 | 1.399181 | 1.313568 | 1.477236 | 
| 3 | diff | 1.597531 | 1.660381 | 2.735550 | 1.752681 | 1.725369 | 17.699544 | 
Figure: Benchmarking of varDiff(), var() and diff() on double+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.

> x <- data[["n = 1000000"]]
> stats <- microbenchmark(varDiff = varDiff(x), var = var(x), diff = diff(x), unit = "ms")Table: Benchmarking of varDiff(), var() and diff() on double+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 3.100131 | 3.695467 | 3.876914 | 3.883719 | 4.073515 | 4.99572 | 
| 1 | varDiff | 4.027280 | 4.660096 | 5.380448 | 5.038323 | 5.268857 | 16.74503 | 
| 3 | diff | 6.217304 | 6.938252 | 13.940960 | 12.984295 | 13.872761 | 267.65223 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 1 | varDiff | 1.299068 | 1.261030 | 1.387817 | 1.297294 | 1.293442 | 3.351876 | 
| 3 | diff | 2.005497 | 1.877503 | 3.595891 | 3.343263 | 3.405600 | 53.576308 | 
Figure: Benchmarking of varDiff(), var() and diff() on double+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.

R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS:   /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
other attached packages:
[1] microbenchmark_1.4-6    matrixStats_0.55.0-9000 ggplot2_3.2.1          
[4] knitr_1.24              R.devices_2.16.0        R.utils_2.9.0          
[7] R.oo_1.22.0             R.methodsS3_1.7.1       history_0.0.0-9002     
loaded via a namespace (and not attached):
 [1] Biobase_2.45.0       bit64_0.9-7          splines_3.6.1       
 [4] network_1.15         assertthat_0.2.1     highr_0.8           
 [7] stats4_3.6.1         blob_1.2.0           robustbase_0.93-5   
[10] pillar_1.4.2         RSQLite_2.1.2        backports_1.1.4     
[13] lattice_0.20-38      glue_1.3.1           digest_0.6.20       
[16] colorspace_1.4-1     sandwich_2.5-1       Matrix_1.2-17       
[19] XML_3.98-1.20        lpSolve_5.6.13.3     pkgconfig_2.0.2     
[22] genefilter_1.66.0    purrr_0.3.2          ergm_3.10.4         
[25] xtable_1.8-4         mvtnorm_1.0-11       scales_1.0.0        
[28] tibble_2.1.3         annotate_1.62.0      IRanges_2.18.2      
[31] TH.data_1.0-10       withr_2.1.2          BiocGenerics_0.30.0 
[34] lazyeval_0.2.2       mime_0.7             survival_2.44-1.1   
[37] magrittr_1.5         crayon_1.3.4         statnet.common_4.3.0
[40] memoise_1.1.0        laeken_0.5.0         R.cache_0.13.0      
[43] MASS_7.3-51.4        R.rsp_0.43.1         tools_3.6.1         
[46] multcomp_1.4-10      S4Vectors_0.22.1     trust_0.1-7         
[49] munsell_0.5.0        AnnotationDbi_1.46.1 compiler_3.6.1      
[52] rlang_0.4.0          grid_3.6.1           RCurl_1.95-4.12     
[55] cwhmisc_6.6          rappdirs_0.3.1       labeling_0.3        
[58] bitops_1.0-6         base64enc_0.1-3      boot_1.3-23         
[61] gtable_0.3.0         codetools_0.2-16     DBI_1.0.0           
[64] markdown_1.1         R6_2.4.0             zoo_1.8-6           
[67] dplyr_0.8.3          bit_1.1-14           zeallot_0.1.0       
[70] parallel_3.6.1       Rcpp_1.0.2           vctrs_0.2.0         
[73] DEoptimR_1.0-8       tidyselect_0.2.5     xfun_0.9            
[76] coda_0.19-3         Total processing time was 13.34 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('varDiff')Copyright Henrik Bengtsson. Last updated on 2019-09-10 21:14:13 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>