colRowWeightedMedians_subset - HenrikBengtsson/matrixStats GitHub Wiki
matrixStats: Benchmark report
This report benchmark the performance of colWeightedMedians() and rowWeightedMedians on subsetted computation.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         x <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     dim(x) <- c(nrow, ncol)
+     x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = "double")> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> w <- runif(nrow(X))
> w_S <- w[rows]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3227229 172.4    5709258 305.0  5709258 305.0
Vcells 6786367  51.8   22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colWeightedMedians_X_w_S = colWeightedMedians(X_S, w = w_S, na.rm = FALSE), 
+     `colWeightedMedians(X, w, rows, cols)` = colWeightedMedians(X, w = w, rows = rows, cols = cols, 
+         na.rm = FALSE), `colWeightedMedians(X[rows, cols], w[rows])` = colWeightedMedians(X[rows, 
+         cols], w = w[rows], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3226310 172.4    5709258 305.0  5709258 305.0
Vcells 6783615  51.8   22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowWeightedMedians_X_w_S = rowWeightedMedians(X_S, w = w_S, na.rm = FALSE), 
+     `rowWeightedMedians(X, w, cols, rows)` = rowWeightedMedians(X, w = w, rows = cols, cols = rows, 
+         na.rm = FALSE), `rowWeightedMedians(X[cols, rows], w[rows])` = rowWeightedMedians(X[cols, 
+         rows], w = w[rows], na.rm = FALSE), unit = "ms")Table: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colWeightedMedians_X_w_S | 0.034302 | 0.0350375 | 0.0356074 | 0.0353440 | 0.0357190 | 0.049407 | 
| 3 | colWeightedMedians(X[rows, cols], w[rows]) | 0.035735 | 0.0363355 | 0.0368400 | 0.0366545 | 0.0371175 | 0.043340 | 
| 2 | colWeightedMedians(X, w, rows, cols) | 0.035736 | 0.0363760 | 0.0402145 | 0.0367535 | 0.0369840 | 0.349562 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colWeightedMedians_X_w_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 3 | colWeightedMedians(X[rows, cols], w[rows]) | 1.041776 | 1.037046 | 1.034616 | 1.037078 | 1.039153 | 0.8772036 | 
| 2 | colWeightedMedians(X, w, rows, cols) | 1.041805 | 1.038202 | 1.129386 | 1.039880 | 1.035415 | 7.0751513 | 
Table: Benchmarking of rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on 10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowWeightedMedians_X_w_S | 0.034195 | 0.0348485 | 0.0352173 | 0.0350925 | 0.0354385 | 0.039509 | 
| 2 | rowWeightedMedians(X, w, cols, rows) | 0.035136 | 0.0362160 | 0.0391777 | 0.0364440 | 0.0368450 | 0.281168 | 
| 3 | rowWeightedMedians(X[cols, rows], w[rows]) | 0.035346 | 0.0362270 | 0.0365771 | 0.0364870 | 0.0367300 | 0.041582 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowWeightedMedians_X_w_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowWeightedMedians(X, w, cols, rows) | 1.027519 | 1.039241 | 1.112458 | 1.038512 | 1.039689 | 7.116556 | 
| 3 | rowWeightedMedians(X[cols, rows], w[rows]) | 1.033660 | 1.039557 | 1.038612 | 1.039738 | 1.036443 | 1.052469 | 
Figure: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 10x10 data as well as rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 10x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 10x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowWeightedMedians_X_w_S | 34.195 | 34.8485 | 35.21727 | 35.0925 | 35.4385 | 39.509 | 
| 1 | colWeightedMedians_X_w_S | 34.302 | 35.0375 | 35.60739 | 35.3440 | 35.7190 | 49.407 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowWeightedMedians_X_w_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 1 | colWeightedMedians_X_w_S | 1.003129 | 1.005424 | 1.011078 | 1.007167 | 1.007915 | 1.250525 | 
Figure: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> w <- runif(nrow(X))
> w_S <- w[rows]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3225249 172.3    5709258 305.0  5709258 305.0
Vcells 6454851  49.3   22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colWeightedMedians_X_w_S = colWeightedMedians(X_S, w = w_S, na.rm = FALSE), 
+     `colWeightedMedians(X, w, rows, cols)` = colWeightedMedians(X, w = w, rows = rows, cols = cols, 
+         na.rm = FALSE), `colWeightedMedians(X[rows, cols], w[rows])` = colWeightedMedians(X[rows, 
+         cols], w = w[rows], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3225240 172.3    5709258 305.0  5709258 305.0
Vcells 6464929  49.4   22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowWeightedMedians_X_w_S = rowWeightedMedians(X_S, w = w_S, na.rm = FALSE), 
+     `rowWeightedMedians(X, w, cols, rows)` = rowWeightedMedians(X, w = w, rows = cols, cols = rows, 
+         na.rm = FALSE), `rowWeightedMedians(X[cols, rows], w[rows])` = rowWeightedMedians(X[cols, 
+         rows], w = w[rows], na.rm = FALSE), unit = "ms")Table: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colWeightedMedians_X_w_S | 0.379641 | 0.3857220 | 0.3919640 | 0.390685 | 0.3967110 | 0.419902 | 
| 2 | colWeightedMedians(X, w, rows, cols) | 0.398307 | 0.4044780 | 0.4115723 | 0.407831 | 0.4122035 | 0.546634 | 
| 3 | colWeightedMedians(X[rows, cols], w[rows]) | 0.396093 | 0.4042525 | 0.4093514 | 0.407877 | 0.4135600 | 0.434313 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colWeightedMedians_X_w_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colWeightedMedians(X, w, rows, cols) | 1.049168 | 1.048626 | 1.050026 | 1.043887 | 1.039052 | 1.301813 | 
| 3 | colWeightedMedians(X[rows, cols], w[rows]) | 1.043336 | 1.048041 | 1.044360 | 1.044005 | 1.042472 | 1.034320 | 
Table: Benchmarking of rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on 100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowWeightedMedians_X_w_S | 0.377905 | 0.3831235 | 0.3886964 | 0.3866505 | 0.3908480 | 0.444158 | 
| 3 | rowWeightedMedians(X[cols, rows], w[rows]) | 0.388325 | 0.3920955 | 0.3985507 | 0.3952715 | 0.4002135 | 0.465010 | 
| 2 | rowWeightedMedians(X, w, cols, rows) | 0.387284 | 0.3927990 | 0.3996651 | 0.3956865 | 0.4010540 | 0.533076 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowWeightedMedians_X_w_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 3 | rowWeightedMedians(X[cols, rows], w[rows]) | 1.027573 | 1.023418 | 1.025352 | 1.022297 | 1.023962 | 1.046947 | 
| 2 | rowWeightedMedians(X, w, cols, rows) | 1.024818 | 1.025254 | 1.028219 | 1.023370 | 1.026112 | 1.200195 | 
Figure: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 100x100 data as well as rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 100x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 100x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowWeightedMedians_X_w_S | 377.905 | 383.1235 | 388.6964 | 386.6505 | 390.848 | 444.158 | 
| 1 | colWeightedMedians_X_w_S | 379.641 | 385.7220 | 391.9640 | 390.6850 | 396.711 | 419.902 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowWeightedMedians_X_w_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 1 | colWeightedMedians_X_w_S | 1.004594 | 1.006782 | 1.008407 | 1.010434 | 1.015001 | 0.9453888 | 
Figure: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> w <- runif(nrow(X))
> w_S <- w[rows]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3226009 172.3    5709258 305.0  5709258 305.0
Vcells 6460823  49.3   22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colWeightedMedians_X_w_S = colWeightedMedians(X_S, w = w_S, na.rm = FALSE), 
+     `colWeightedMedians(X, w, rows, cols)` = colWeightedMedians(X, w = w, rows = rows, cols = cols, 
+         na.rm = FALSE), `colWeightedMedians(X[rows, cols], w[rows])` = colWeightedMedians(X[rows, 
+         cols], w = w[rows], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3225997 172.3    5709258 305.0  5709258 305.0
Vcells 6470896  49.4   22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowWeightedMedians_X_w_S = rowWeightedMedians(X_S, w = w_S, na.rm = FALSE), 
+     `rowWeightedMedians(X, w, cols, rows)` = rowWeightedMedians(X, w = w, rows = cols, cols = rows, 
+         na.rm = FALSE), `rowWeightedMedians(X[cols, rows], w[rows])` = rowWeightedMedians(X[cols, 
+         rows], w = w[rows], na.rm = FALSE), unit = "ms")Table: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colWeightedMedians_X_w_S | 0.273149 | 0.2767410 | 0.2792019 | 0.2785060 | 0.2809955 | 0.315919 | 
| 3 | colWeightedMedians(X[rows, cols], w[rows]) | 0.292800 | 0.2960765 | 0.2983786 | 0.2977415 | 0.3006775 | 0.313773 | 
| 2 | colWeightedMedians(X, w, rows, cols) | 0.292246 | 0.2972230 | 0.3008766 | 0.2994060 | 0.3015225 | 0.414559 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colWeightedMedians_X_w_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 3 | colWeightedMedians(X[rows, cols], w[rows]) | 1.071942 | 1.069869 | 1.068684 | 1.069067 | 1.070044 | 0.9932071 | 
| 2 | colWeightedMedians(X, w, rows, cols) | 1.069914 | 1.074011 | 1.077631 | 1.075043 | 1.073051 | 1.3122319 | 
Table: Benchmarking of rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on 1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowWeightedMedians_X_w_S | 0.273641 | 0.2766135 | 0.2796697 | 0.2789745 | 0.2822870 | 0.309655 | 
| 3 | rowWeightedMedians(X[cols, rows], w[rows]) | 0.286128 | 0.2903070 | 0.2942811 | 0.2925320 | 0.2953505 | 0.397460 | 
| 2 | rowWeightedMedians(X, w, cols, rows) | 0.287867 | 0.2923810 | 0.2953519 | 0.2948145 | 0.2974310 | 0.315792 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowWeightedMedians_X_w_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 3 | rowWeightedMedians(X[cols, rows], w[rows]) | 1.045633 | 1.049504 | 1.052245 | 1.048598 | 1.046277 | 1.283557 | 
| 2 | rowWeightedMedians(X, w, cols, rows) | 1.051988 | 1.057002 | 1.056074 | 1.056779 | 1.053648 | 1.019819 | 
Figure: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 1000x10 data as well as rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 1000x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 1000x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colWeightedMedians_X_w_S | 273.149 | 276.7410 | 279.2019 | 278.5060 | 280.9955 | 315.919 | 
| 2 | rowWeightedMedians_X_w_S | 273.641 | 276.6135 | 279.6697 | 278.9745 | 282.2870 | 309.655 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colWeightedMedians_X_w_S | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowWeightedMedians_X_w_S | 1.001801 | 0.9995393 | 1.001676 | 1.001682 | 1.004596 | 0.9801721 | 
Figure: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> w <- runif(nrow(X))
> w_S <- w[rows]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3226206 172.3    5709258 305.0  5709258 305.0
Vcells 6460117  49.3   22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colWeightedMedians_X_w_S = colWeightedMedians(X_S, w = w_S, na.rm = FALSE), 
+     `colWeightedMedians(X, w, rows, cols)` = colWeightedMedians(X, w = w, rows = rows, cols = cols, 
+         na.rm = FALSE), `colWeightedMedians(X[rows, cols], w[rows])` = colWeightedMedians(X[rows, 
+         cols], w = w[rows], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3226197 172.3    5709258 305.0  5709258 305.0
Vcells 6470195  49.4   22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowWeightedMedians_X_w_S = rowWeightedMedians(X_S, w = w_S, na.rm = FALSE), 
+     `rowWeightedMedians(X, w, cols, rows)` = rowWeightedMedians(X, w = w, rows = cols, cols = rows, 
+         na.rm = FALSE), `rowWeightedMedians(X[cols, rows], w[rows])` = rowWeightedMedians(X[cols, 
+         rows], w = w[rows], na.rm = FALSE), unit = "ms")Table: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colWeightedMedians_X_w_S | 1.763628 | 1.892162 | 2.130632 | 1.967949 | 2.166019 | 8.076422 | 
| 2 | colWeightedMedians(X, w, rows, cols) | 1.779392 | 1.902375 | 2.134930 | 1.970640 | 2.191380 | 7.873922 | 
| 3 | colWeightedMedians(X[rows, cols], w[rows]) | 1.783316 | 1.864411 | 2.207503 | 1.991594 | 2.208190 | 8.265785 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colWeightedMedians_X_w_S | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colWeightedMedians(X, w, rows, cols) | 1.008938 | 1.0053975 | 1.002017 | 1.001367 | 1.011708 | 0.974927 | 
| 3 | colWeightedMedians(X[rows, cols], w[rows]) | 1.011163 | 0.9853334 | 1.036079 | 1.012015 | 1.019469 | 1.023446 | 
Table: Benchmarking of rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on 10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowWeightedMedians(X, w, cols, rows) | 1.794099 | 1.871738 | 1.958928 | 1.915993 | 2.007179 | 2.305629 | 
| 1 | rowWeightedMedians_X_w_S | 1.780364 | 1.878151 | 2.055792 | 1.920506 | 1.986166 | 7.812905 | 
| 3 | rowWeightedMedians(X[cols, rows], w[rows]) | 1.787825 | 1.894575 | 2.018832 | 1.925763 | 2.003176 | 8.042999 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowWeightedMedians(X, w, cols, rows) | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 
| 1 | rowWeightedMedians_X_w_S | 0.9923443 | 1.003426 | 1.049448 | 1.002355 | 0.9895311 | 3.388622 | 
| 3 | rowWeightedMedians(X[cols, rows], w[rows]) | 0.9965030 | 1.012201 | 1.030580 | 1.005099 | 0.9980059 | 3.488419 | 
Figure: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 10x1000 data as well as rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 10x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 10x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowWeightedMedians_X_w_S | 1.780364 | 1.878151 | 2.055792 | 1.920506 | 1.986166 | 7.812905 | 
| 1 | colWeightedMedians_X_w_S | 1.763628 | 1.892162 | 2.130632 | 1.967949 | 2.166019 | 8.076422 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowWeightedMedians_X_w_S | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 1 | colWeightedMedians_X_w_S | 0.9905997 | 1.007461 | 1.036404 | 1.024703 | 1.090553 | 1.033728 | 
Figure: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> w <- runif(nrow(X))
> w_S <- w[rows]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3226414 172.4    5709258 305.0  5709258 305.0
Vcells 6505082  49.7   22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colWeightedMedians_X_w_S = colWeightedMedians(X_S, w = w_S, na.rm = FALSE), 
+     `colWeightedMedians(X, w, rows, cols)` = colWeightedMedians(X, w = w, rows = rows, cols = cols, 
+         na.rm = FALSE), `colWeightedMedians(X[rows, cols], w[rows])` = colWeightedMedians(X[rows, 
+         cols], w = w[rows], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3226405 172.4    5709258 305.0  5709258 305.0
Vcells 6605160  50.4   22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowWeightedMedians_X_w_S = rowWeightedMedians(X_S, w = w_S, na.rm = FALSE), 
+     `rowWeightedMedians(X, w, cols, rows)` = rowWeightedMedians(X, w = w, rows = cols, cols = rows, 
+         na.rm = FALSE), `rowWeightedMedians(X[cols, rows], w[rows])` = rowWeightedMedians(X[cols, 
+         rows], w = w[rows], na.rm = FALSE), unit = "ms")Table: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colWeightedMedians_X_w_S | 3.659224 | 3.803071 | 4.289474 | 3.896034 | 4.074591 | 17.704004 | 
| 2 | colWeightedMedians(X, w, rows, cols) | 3.866455 | 4.022183 | 4.330211 | 4.103757 | 4.319814 | 7.683273 | 
| 3 | colWeightedMedians(X[rows, cols], w[rows]) | 3.837779 | 4.028799 | 4.669478 | 4.148396 | 4.450134 | 19.872772 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colWeightedMedians_X_w_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colWeightedMedians(X, w, rows, cols) | 1.056633 | 1.057615 | 1.009497 | 1.053317 | 1.060184 | 0.433985 | 
| 3 | colWeightedMedians(X[rows, cols], w[rows]) | 1.048796 | 1.059354 | 1.088590 | 1.064774 | 1.092167 | 1.122502 | 
Table: Benchmarking of rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on 100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowWeightedMedians_X_w_S | 3.674153 | 3.835123 | 4.027186 | 3.936933 | 4.034851 | 5.754177 | 
| 2 | rowWeightedMedians(X, w, cols, rows) | 3.793616 | 3.962799 | 4.305666 | 4.039116 | 4.113932 | 19.721633 | 
| 3 | rowWeightedMedians(X[cols, rows], w[rows]) | 3.787243 | 3.989422 | 4.461775 | 4.058145 | 4.194319 | 17.824748 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowWeightedMedians_X_w_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowWeightedMedians(X, w, cols, rows) | 1.032514 | 1.033291 | 1.069150 | 1.025955 | 1.019600 | 3.427360 | 
| 3 | rowWeightedMedians(X[cols, rows], w[rows]) | 1.030780 | 1.040233 | 1.107914 | 1.030789 | 1.039523 | 3.097706 | 
Figure: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 100x1000 data as well as rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 100x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 100x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colWeightedMedians_X_w_S | 3.659224 | 3.803071 | 4.289474 | 3.896034 | 4.074591 | 17.704004 | 
| 2 | rowWeightedMedians_X_w_S | 3.674153 | 3.835123 | 4.027186 | 3.936933 | 4.034851 | 5.754177 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colWeightedMedians_X_w_S | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 1.0000000 | 
| 2 | rowWeightedMedians_X_w_S | 1.00408 | 1.008428 | 0.938853 | 1.010498 | 0.9902469 | 0.3250212 | 
Figure: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> w <- runif(nrow(X))
> w_S <- w[rows]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3226621 172.4    5709258 305.0  5709258 305.0
Vcells 6507415  49.7   22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colWeightedMedians_X_w_S = colWeightedMedians(X_S, w = w_S, na.rm = FALSE), 
+     `colWeightedMedians(X, w, rows, cols)` = colWeightedMedians(X, w = w, rows = rows, cols = cols, 
+         na.rm = FALSE), `colWeightedMedians(X[rows, cols], w[rows])` = colWeightedMedians(X[rows, 
+         cols], w = w[rows], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3226612 172.4    5709258 305.0  5709258 305.0
Vcells 6607493  50.5   22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowWeightedMedians_X_w_S = rowWeightedMedians(X_S, w = w_S, na.rm = FALSE), 
+     `rowWeightedMedians(X, w, cols, rows)` = rowWeightedMedians(X, w = w, rows = cols, cols = rows, 
+         na.rm = FALSE), `rowWeightedMedians(X[cols, rows], w[rows])` = rowWeightedMedians(X[cols, 
+         rows], w = w[rows], na.rm = FALSE), unit = "ms")Table: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colWeightedMedians_X_w_S | 2.535627 | 2.597145 | 2.670464 | 2.616480 | 2.679305 | 3.283902 | 
| 2 | colWeightedMedians(X, w, rows, cols) | 2.626993 | 2.690973 | 2.958426 | 2.723665 | 2.779863 | 11.044253 | 
| 3 | colWeightedMedians(X[rows, cols], w[rows]) | 2.598347 | 2.685658 | 2.840788 | 2.725602 | 2.779620 | 10.781910 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colWeightedMedians_X_w_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colWeightedMedians(X, w, rows, cols) | 1.036033 | 1.036127 | 1.107832 | 1.040965 | 1.037531 | 3.363149 | 
| 3 | colWeightedMedians(X[rows, cols], w[rows]) | 1.024736 | 1.034080 | 1.063781 | 1.041706 | 1.037441 | 3.283262 | 
Table: Benchmarking of rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on 1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowWeightedMedians_X_w_S | 2.550044 | 2.649730 | 2.719527 | 2.693096 | 2.733735 | 3.590357 | 
| 2 | rowWeightedMedians(X, w, cols, rows) | 2.653831 | 2.774217 | 2.934614 | 2.803576 | 2.864693 | 10.831308 | 
| 3 | rowWeightedMedians(X[cols, rows], w[rows]) | 2.647955 | 2.780111 | 3.044350 | 2.809877 | 2.895876 | 10.920285 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowWeightedMedians_X_w_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowWeightedMedians(X, w, cols, rows) | 1.040700 | 1.046981 | 1.079090 | 1.041023 | 1.047905 | 3.016777 | 
| 3 | rowWeightedMedians(X[cols, rows], w[rows]) | 1.038396 | 1.049205 | 1.119441 | 1.043363 | 1.059311 | 3.041560 | 
Figure: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 1000x100 data as well as rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 1000x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 1000x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colWeightedMedians_X_w_S | 2.535627 | 2.597145 | 2.670464 | 2.616480 | 2.679305 | 3.283902 | 
| 2 | rowWeightedMedians_X_w_S | 2.550044 | 2.649730 | 2.719527 | 2.693096 | 2.733735 | 3.590357 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colWeightedMedians_X_w_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 
| 2 | rowWeightedMedians_X_w_S | 1.005686 | 1.020247 | 1.018373 | 1.029282 | 1.020315 | 1.09332 | 
Figure: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS:   /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
other attached packages:
[1] microbenchmark_1.4-6    matrixStats_0.55.0-9000 ggplot2_3.2.1          
[4] knitr_1.24              R.devices_2.16.0        R.utils_2.9.0          
[7] R.oo_1.22.0             R.methodsS3_1.7.1       history_0.0.0-9002     
loaded via a namespace (and not attached):
 [1] Biobase_2.45.0       bit64_0.9-7          splines_3.6.1       
 [4] network_1.15         assertthat_0.2.1     highr_0.8           
 [7] stats4_3.6.1         blob_1.2.0           robustbase_0.93-5   
[10] pillar_1.4.2         RSQLite_2.1.2        backports_1.1.4     
[13] lattice_0.20-38      glue_1.3.1           digest_0.6.20       
[16] colorspace_1.4-1     sandwich_2.5-1       Matrix_1.2-17       
[19] XML_3.98-1.20        lpSolve_5.6.13.3     pkgconfig_2.0.2     
[22] genefilter_1.66.0    purrr_0.3.2          ergm_3.10.4         
[25] xtable_1.8-4         mvtnorm_1.0-11       scales_1.0.0        
[28] tibble_2.1.3         annotate_1.62.0      IRanges_2.18.2      
[31] TH.data_1.0-10       withr_2.1.2          BiocGenerics_0.30.0 
[34] lazyeval_0.2.2       mime_0.7             survival_2.44-1.1   
[37] magrittr_1.5         crayon_1.3.4         statnet.common_4.3.0
[40] memoise_1.1.0        laeken_0.5.0         R.cache_0.13.0      
[43] MASS_7.3-51.4        R.rsp_0.43.1         tools_3.6.1         
[46] multcomp_1.4-10      S4Vectors_0.22.1     trust_0.1-7         
[49] munsell_0.5.0        AnnotationDbi_1.46.1 compiler_3.6.1      
[52] rlang_0.4.0          grid_3.6.1           RCurl_1.95-4.12     
[55] cwhmisc_6.6          rappdirs_0.3.1       labeling_0.3        
[58] bitops_1.0-6         base64enc_0.1-3      boot_1.3-23         
[61] gtable_0.3.0         codetools_0.2-16     DBI_1.0.0           
[64] markdown_1.1         R6_2.4.0             zoo_1.8-6           
[67] dplyr_0.8.3          bit_1.1-14           zeallot_0.1.0       
[70] parallel_3.6.1       Rcpp_1.0.2           vctrs_0.2.0         
[73] DEoptimR_1.0-8       tidyselect_0.2.5     xfun_0.9            
[76] coda_0.19-3         Total processing time was 17.8 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colRowWeightedMedians_subset')Copyright Dongcan Jiang. Last updated on 2019-09-10 20:55:55 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>