colRowVars_subset - HenrikBengtsson/matrixStats GitHub Wiki
matrixStats: Benchmark report
This report benchmark the performance of colVars() and rowVars() on subsetted computation.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3211765 171.6 5709258 305.0 5709258 305.0
Vcells 6390188 48.8 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colVars_X_S = colVars(X_S, na.rm = FALSE), `colVars(X, rows, cols)` = colVars(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colVars(X[rows, cols])` = colVars(X[rows, cols], na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3210427 171.5 5709258 305.0 5709258 305.0
Vcells 6386223 48.8 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowVars_X_S = rowVars(X_S, na.rm = FALSE), `rowVars(X, cols, rows)` = rowVars(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowVars(X[cols, rows])` = rowVars(X[cols, rows], na.rm = FALSE),
+ unit = "ms")Table: Benchmarking of colVars_X_S(), colVars(X, rows, cols)() and colVars(X[rows, cols])() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 0.001303 | 0.0013385 | 0.0032108 | 0.0013700 | 0.001510 | 0.179394 |
| 2 | colVars(X, rows, cols) | 0.001458 | 0.0015185 | 0.0016245 | 0.0015620 | 0.001673 | 0.003003 |
| 3 | colVars(X[rows, cols]) | 0.001803 | 0.0020350 | 0.0022231 | 0.0021165 | 0.002268 | 0.007480 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | colVars(X, rows, cols) | 1.118956 | 1.134479 | 0.5059425 | 1.140146 | 1.107947 | 0.0167397 |
| 3 | colVars(X[rows, cols]) | 1.383730 | 1.520359 | 0.6923906 | 1.544890 | 1.501987 | 0.0416959 |
Table: Benchmarking of rowVars_X_S(), rowVars(X, cols, rows)() and rowVars(X[cols, rows])() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowVars_X_S | 0.001254 | 0.0012980 | 0.0013920 | 0.0013245 | 0.001423 | 0.003318 |
| 2 | rowVars(X, cols, rows) | 0.001432 | 0.0014705 | 0.0035122 | 0.0015320 | 0.001649 | 0.191093 |
| 3 | rowVars(X[cols, rows]) | 0.001778 | 0.0020190 | 0.0021897 | 0.0020775 | 0.002221 | 0.006624 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowVars_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowVars(X, cols, rows) | 1.141946 | 1.132897 | 2.523125 | 1.156663 | 1.158819 | 57.592827 |
| 3 | rowVars(X[cols, rows]) | 1.417863 | 1.555470 | 1.573075 | 1.568516 | 1.560787 | 1.996383 |
Figure: Benchmarking of colVars_X_S(), colVars(X, rows, cols)() and colVars(X[rows, cols])() on integer+10x10 data as well as rowVars_X_S(), rowVars(X, cols, rows)() and rowVars(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colVars_X_S() and rowVars_X_S() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowVars_X_S | 1.254 | 1.2980 | 1.39200 | 1.3245 | 1.423 | 3.318 |
| 1 | colVars_X_S | 1.303 | 1.3385 | 3.21076 | 1.3700 | 1.510 | 179.394 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowVars_X_S | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.00000 |
| 1 | colVars_X_S | 1.039075 | 1.031202 | 2.30658 | 1.034353 | 1.061138 | 54.06691 |
Figure: Benchmarking of colVars_X_S() and rowVars_X_S() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3209369 171.4 5709258 305.0 5709258 305.0
Vcells 6221252 47.5 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colVars_X_S = colVars(X_S, na.rm = FALSE), `colVars(X, rows, cols)` = colVars(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colVars(X[rows, cols])` = colVars(X[rows, cols], na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3209360 171.4 5709258 305.0 5709258 305.0
Vcells 6226330 47.6 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowVars_X_S = rowVars(X_S, na.rm = FALSE), `rowVars(X, cols, rows)` = rowVars(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowVars(X[cols, rows])` = rowVars(X[cols, rows], na.rm = FALSE),
+ unit = "ms")Table: Benchmarking of colVars_X_S(), colVars(X, rows, cols)() and colVars(X[rows, cols])() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 0.014832 | 0.015276 | 0.0154887 | 0.0154365 | 0.0156015 | 0.020154 |
| 2 | colVars(X, rows, cols) | 0.016272 | 0.016687 | 0.0169684 | 0.0168865 | 0.0171180 | 0.018887 |
| 3 | colVars(X[rows, cols]) | 0.022392 | 0.022986 | 0.0238073 | 0.0232485 | 0.0234700 | 0.066681 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | colVars(X, rows, cols) | 1.097087 | 1.092367 | 1.095532 | 1.093933 | 1.097202 | 0.9371341 |
| 3 | colVars(X[rows, cols]) | 1.509709 | 1.504713 | 1.537073 | 1.506073 | 1.504342 | 3.3085740 |
Table: Benchmarking of rowVars_X_S(), rowVars(X, cols, rows)() and rowVars(X[cols, rows])() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowVars_X_S | 0.014771 | 0.0152990 | 0.0156075 | 0.0155025 | 0.0156680 | 0.021089 |
| 2 | rowVars(X, cols, rows) | 0.016280 | 0.0168335 | 0.0169931 | 0.0169650 | 0.0171275 | 0.017905 |
| 3 | rowVars(X[cols, rows]) | 0.022356 | 0.0230170 | 0.0236506 | 0.0231950 | 0.0234005 | 0.054222 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowVars_X_S | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.0000000 |
| 2 | rowVars(X, cols, rows) | 1.102160 | 1.100301 | 1.088777 | 1.09434 | 1.093152 | 0.8490208 |
| 3 | rowVars(X[cols, rows]) | 1.513506 | 1.504477 | 1.515340 | 1.49621 | 1.493522 | 2.5711034 |
Figure: Benchmarking of colVars_X_S(), colVars(X, rows, cols)() and colVars(X[rows, cols])() on integer+100x100 data as well as rowVars_X_S(), rowVars(X, cols, rows)() and rowVars(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colVars_X_S() and rowVars_X_S() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 14.832 | 15.276 | 15.48871 | 15.4365 | 15.6015 | 20.154 |
| 2 | rowVars_X_S | 14.771 | 15.299 | 15.60749 | 15.5025 | 15.6680 | 21.089 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowVars_X_S | 0.9958873 | 1.001506 | 1.007669 | 1.004276 | 1.004262 | 1.046393 |
Figure: Benchmarking of colVars_X_S() and rowVars_X_S() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3210122 171.5 5709258 305.0 5709258 305.0
Vcells 6225319 47.5 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colVars_X_S = colVars(X_S, na.rm = FALSE), `colVars(X, rows, cols)` = colVars(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colVars(X[rows, cols])` = colVars(X[rows, cols], na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3210113 171.5 5709258 305.0 5709258 305.0
Vcells 6230397 47.6 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowVars_X_S = rowVars(X_S, na.rm = FALSE), `rowVars(X, cols, rows)` = rowVars(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowVars(X[cols, rows])` = rowVars(X[cols, rows], na.rm = FALSE),
+ unit = "ms")Table: Benchmarking of colVars_X_S(), colVars(X, rows, cols)() and colVars(X[rows, cols])() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 0.015176 | 0.0157620 | 0.0161403 | 0.0159255 | 0.0162365 | 0.022067 |
| 2 | colVars(X, rows, cols) | 0.017314 | 0.0177445 | 0.0186162 | 0.0179330 | 0.0181740 | 0.047381 |
| 3 | colVars(X[rows, cols]) | 0.022907 | 0.0237335 | 0.0244864 | 0.0240165 | 0.0243375 | 0.037453 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | colVars(X, rows, cols) | 1.140880 | 1.125777 | 1.153403 | 1.126056 | 1.119330 | 2.147143 |
| 3 | colVars(X[rows, cols]) | 1.509423 | 1.505742 | 1.517101 | 1.508053 | 1.498938 | 1.697240 |
Table: Benchmarking of rowVars_X_S(), rowVars(X, cols, rows)() and rowVars(X[cols, rows])() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowVars_X_S | 0.015426 | 0.0156825 | 0.0164466 | 0.0158725 | 0.0161710 | 0.047425 |
| 2 | rowVars(X, cols, rows) | 0.017474 | 0.0177705 | 0.0180465 | 0.0179095 | 0.0180805 | 0.027459 |
| 3 | rowVars(X[cols, rows]) | 0.024103 | 0.0245445 | 0.0249527 | 0.0247000 | 0.0249830 | 0.034490 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowVars_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | rowVars(X, cols, rows) | 1.132763 | 1.133142 | 1.097277 | 1.128335 | 1.118082 | 0.5789984 |
| 3 | rowVars(X[cols, rows]) | 1.562492 | 1.565089 | 1.517193 | 1.556151 | 1.544926 | 0.7272536 |
Figure: Benchmarking of colVars_X_S(), colVars(X, rows, cols)() and colVars(X[rows, cols])() on integer+1000x10 data as well as rowVars_X_S(), rowVars(X, cols, rows)() and rowVars(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colVars_X_S() and rowVars_X_S() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowVars_X_S | 15.426 | 15.6825 | 16.44660 | 15.8725 | 16.1710 | 47.425 |
| 1 | colVars_X_S | 15.176 | 15.7620 | 16.14028 | 15.9255 | 16.2365 | 22.067 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowVars_X_S | 1.0000000 | 1.000000 | 1.0000000 | 1.000000 | 1.00000 | 1.0000000 |
| 1 | colVars_X_S | 0.9837936 | 1.005069 | 0.9813749 | 1.003339 | 1.00405 | 0.4653031 |
Figure: Benchmarking of colVars_X_S() and rowVars_X_S() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3210328 171.5 5709258 305.0 5709258 305.0
Vcells 6226126 47.6 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colVars_X_S = colVars(X_S, na.rm = FALSE), `colVars(X, rows, cols)` = colVars(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colVars(X[rows, cols])` = colVars(X[rows, cols], na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3210319 171.5 5709258 305.0 5709258 305.0
Vcells 6231204 47.6 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowVars_X_S = rowVars(X_S, na.rm = FALSE), `rowVars(X, cols, rows)` = rowVars(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowVars(X[cols, rows])` = rowVars(X[cols, rows], na.rm = FALSE),
+ unit = "ms")Table: Benchmarking of colVars_X_S(), colVars(X, rows, cols)() and colVars(X[rows, cols])() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 0.013177 | 0.0134210 | 0.0135878 | 0.013535 | 0.0137025 | 0.015141 |
| 2 | colVars(X, rows, cols) | 0.015447 | 0.0157095 | 0.0162344 | 0.015821 | 0.0159930 | 0.047378 |
| 3 | colVars(X[rows, cols]) | 0.021879 | 0.0221990 | 0.0226521 | 0.022419 | 0.0226640 | 0.029335 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | colVars(X, rows, cols) | 1.172270 | 1.170516 | 1.194778 | 1.168896 | 1.167159 | 3.129120 |
| 3 | colVars(X[rows, cols]) | 1.660393 | 1.654050 | 1.667091 | 1.656372 | 1.654005 | 1.937455 |
Table: Benchmarking of rowVars_X_S(), rowVars(X, cols, rows)() and rowVars(X[cols, rows])() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowVars_X_S | 0.013187 | 0.0134375 | 0.0139077 | 0.013532 | 0.0137535 | 0.043534 |
| 2 | rowVars(X, cols, rows) | 0.015307 | 0.0155410 | 0.0157382 | 0.015646 | 0.0158290 | 0.019490 |
| 3 | rowVars(X[cols, rows]) | 0.020708 | 0.0210780 | 0.0216072 | 0.021298 | 0.0215280 | 0.038328 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowVars_X_S | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | rowVars(X, cols, rows) | 1.160764 | 1.156540 | 1.13162 | 1.156222 | 1.150907 | 0.4476961 |
| 3 | rowVars(X[cols, rows]) | 1.570334 | 1.568595 | 1.55361 | 1.573899 | 1.565274 | 0.8804153 |
Figure: Benchmarking of colVars_X_S(), colVars(X, rows, cols)() and colVars(X[rows, cols])() on integer+10x1000 data as well as rowVars_X_S(), rowVars(X, cols, rows)() and rowVars(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colVars_X_S() and rowVars_X_S() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowVars_X_S | 13.187 | 13.4375 | 13.90771 | 13.532 | 13.7535 | 43.534 |
| 1 | colVars_X_S | 13.177 | 13.4210 | 13.58781 | 13.535 | 13.7025 | 15.141 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowVars_X_S | 1.0000000 | 1.0000000 | 1.0000000 | 1.000000 | 1.0000000 | 1.0000000 |
| 1 | colVars_X_S | 0.9992417 | 0.9987721 | 0.9769984 | 1.000222 | 0.9962919 | 0.3477971 |
Figure: Benchmarking of colVars_X_S() and rowVars_X_S() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3210527 171.5 5709258 305.0 5709258 305.0
Vcells 6248781 47.7 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colVars_X_S = colVars(X_S, na.rm = FALSE), `colVars(X, rows, cols)` = colVars(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colVars(X[rows, cols])` = colVars(X[rows, cols], na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3210518 171.5 5709258 305.0 5709258 305.0
Vcells 6298859 48.1 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowVars_X_S = rowVars(X_S, na.rm = FALSE), `rowVars(X, cols, rows)` = rowVars(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowVars(X[cols, rows])` = rowVars(X[cols, rows], na.rm = FALSE),
+ unit = "ms")Table: Benchmarking of colVars_X_S(), colVars(X, rows, cols)() and colVars(X[rows, cols])() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 0.134647 | 0.135256 | 0.1358003 | 0.1355335 | 0.1358635 | 0.141012 |
| 2 | colVars(X, rows, cols) | 0.147814 | 0.148305 | 0.1495893 | 0.1484980 | 0.1488745 | 0.229740 |
| 3 | colVars(X[rows, cols]) | 0.206650 | 0.207317 | 0.2089107 | 0.2077855 | 0.2095485 | 0.228552 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | colVars(X, rows, cols) | 1.097789 | 1.096476 | 1.101539 | 1.095655 | 1.095765 | 1.629223 |
| 3 | colVars(X[rows, cols]) | 1.534754 | 1.532775 | 1.538367 | 1.533093 | 1.542346 | 1.620798 |
Table: Benchmarking of rowVars_X_S(), rowVars(X, cols, rows)() and rowVars(X[cols, rows])() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowVars_X_S | 0.135613 | 0.1362015 | 0.1383318 | 0.1366115 | 0.1370830 | 0.192034 |
| 2 | rowVars(X, cols, rows) | 0.161999 | 0.1626385 | 0.1704351 | 0.1629330 | 0.1634955 | 0.353941 |
| 3 | rowVars(X[cols, rows]) | 0.199245 | 0.2001745 | 0.2101865 | 0.2011915 | 0.2037740 | 0.603225 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowVars_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowVars(X, cols, rows) | 1.194568 | 1.194102 | 1.232074 | 1.192674 | 1.192675 | 1.843116 |
| 3 | rowVars(X[cols, rows]) | 1.469218 | 1.469694 | 1.519437 | 1.472727 | 1.486501 | 3.141241 |
Figure: Benchmarking of colVars_X_S(), colVars(X, rows, cols)() and colVars(X[rows, cols])() on integer+100x1000 data as well as rowVars_X_S(), rowVars(X, cols, rows)() and rowVars(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colVars_X_S() and rowVars_X_S() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 134.647 | 135.2560 | 135.8003 | 135.5335 | 135.8635 | 141.012 |
| 2 | rowVars_X_S | 135.613 | 136.2015 | 138.3318 | 136.6115 | 137.0830 | 192.034 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowVars_X_S | 1.007174 | 1.00699 | 1.018642 | 1.007954 | 1.008976 | 1.361827 |
Figure: Benchmarking of colVars_X_S() and rowVars_X_S() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3210743 171.5 5709258 305.0 5709258 305.0
Vcells 6249557 47.7 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colVars_X_S = colVars(X_S, na.rm = FALSE), `colVars(X, rows, cols)` = colVars(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colVars(X[rows, cols])` = colVars(X[rows, cols], na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3210734 171.5 5709258 305.0 5709258 305.0
Vcells 6299635 48.1 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowVars_X_S = rowVars(X_S, na.rm = FALSE), `rowVars(X, cols, rows)` = rowVars(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowVars(X[cols, rows])` = rowVars(X[cols, rows], na.rm = FALSE),
+ unit = "ms")Table: Benchmarking of colVars_X_S(), colVars(X, rows, cols)() and colVars(X[rows, cols])() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 0.133028 | 0.1336505 | 0.1342402 | 0.133925 | 0.1343050 | 0.143513 |
| 2 | colVars(X, rows, cols) | 0.145479 | 0.1461500 | 0.1466534 | 0.146458 | 0.1468135 | 0.150657 |
| 3 | colVars(X[rows, cols]) | 0.196497 | 0.1972985 | 0.1995193 | 0.197802 | 0.1991825 | 0.272239 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | colVars(X, rows, cols) | 1.093597 | 1.093524 | 1.092470 | 1.093582 | 1.093135 | 1.049780 |
| 3 | colVars(X[rows, cols]) | 1.477110 | 1.476227 | 1.486286 | 1.476961 | 1.483061 | 1.896964 |
Table: Benchmarking of rowVars_X_S(), rowVars(X, cols, rows)() and rowVars(X[cols, rows])() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowVars_X_S | 0.141745 | 0.1430815 | 0.1453413 | 0.1441050 | 0.1459745 | 0.165820 |
| 2 | rowVars(X, cols, rows) | 0.167980 | 0.1691650 | 0.1718551 | 0.1696470 | 0.1703585 | 0.261886 |
| 3 | rowVars(X[cols, rows]) | 0.213224 | 0.2158775 | 0.2237050 | 0.2185505 | 0.2240335 | 0.379549 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowVars_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowVars(X, cols, rows) | 1.185086 | 1.182298 | 1.182424 | 1.177246 | 1.167043 | 1.579339 |
| 3 | rowVars(X[cols, rows]) | 1.504279 | 1.508773 | 1.539170 | 1.516606 | 1.534744 | 2.288922 |
Figure: Benchmarking of colVars_X_S(), colVars(X, rows, cols)() and colVars(X[rows, cols])() on integer+1000x100 data as well as rowVars_X_S(), rowVars(X, cols, rows)() and rowVars(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colVars_X_S() and rowVars_X_S() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 133.028 | 133.6505 | 134.2402 | 133.925 | 134.3050 | 143.513 |
| 2 | rowVars_X_S | 141.745 | 143.0815 | 145.3413 | 144.105 | 145.9745 | 165.820 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowVars_X_S | 1.065528 | 1.070565 | 1.082696 | 1.076013 | 1.086888 | 1.155435 |
Figure: Benchmarking of colVars_X_S() and rowVars_X_S() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3210961 171.5 5709258 305.0 5709258 305.0
Vcells 6340648 48.4 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colVars_X_S = colVars(X_S, na.rm = FALSE), `colVars(X, rows, cols)` = colVars(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colVars(X[rows, cols])` = colVars(X[rows, cols], na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3210943 171.5 5709258 305.0 5709258 305.0
Vcells 6340811 48.4 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowVars_X_S = rowVars(X_S, na.rm = FALSE), `rowVars(X, cols, rows)` = rowVars(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowVars(X[cols, rows])` = rowVars(X[cols, rows], na.rm = FALSE),
+ unit = "ms")Table: Benchmarking of colVars_X_S(), colVars(X, rows, cols)() and colVars(X[rows, cols])() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 0.001289 | 0.0013365 | 0.0015723 | 0.0013685 | 0.0015005 | 0.014006 |
| 2 | colVars(X, rows, cols) | 0.001449 | 0.0015105 | 0.0016194 | 0.0015665 | 0.0016860 | 0.003839 |
| 3 | colVars(X[rows, cols]) | 0.001978 | 0.0021880 | 0.0023490 | 0.0022615 | 0.0024105 | 0.006488 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | colVars(X, rows, cols) | 1.124127 | 1.130191 | 1.029957 | 1.144684 | 1.123625 | 0.2740968 |
| 3 | colVars(X[rows, cols]) | 1.534523 | 1.637112 | 1.494021 | 1.652539 | 1.606464 | 0.4632300 |
Table: Benchmarking of rowVars_X_S(), rowVars(X, cols, rows)() and rowVars(X[cols, rows])() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowVars_X_S | 0.001251 | 0.0012975 | 0.0014414 | 0.0013520 | 0.0014770 | 0.003870 |
| 2 | rowVars(X, cols, rows) | 0.001401 | 0.0014785 | 0.0018948 | 0.0015265 | 0.0016580 | 0.032453 |
| 3 | rowVars(X[cols, rows]) | 0.001837 | 0.0020670 | 0.0022634 | 0.0021405 | 0.0023055 | 0.008125 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowVars_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowVars(X, cols, rows) | 1.119904 | 1.139499 | 1.314516 | 1.129068 | 1.122546 | 8.385788 |
| 3 | rowVars(X[cols, rows]) | 1.468425 | 1.593064 | 1.570271 | 1.583210 | 1.560934 | 2.099483 |
Figure: Benchmarking of colVars_X_S(), colVars(X, rows, cols)() and colVars(X[rows, cols])() on double+10x10 data as well as rowVars_X_S(), rowVars(X, cols, rows)() and rowVars(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colVars_X_S() and rowVars_X_S() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowVars_X_S | 1.251 | 1.2975 | 1.44142 | 1.3520 | 1.4770 | 3.870 |
| 1 | colVars_X_S | 1.289 | 1.3365 | 1.57226 | 1.3685 | 1.5005 | 14.006 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowVars_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 1 | colVars_X_S | 1.030376 | 1.030058 | 1.090772 | 1.012204 | 1.015911 | 3.619121 |
Figure: Benchmarking of colVars_X_S() and rowVars_X_S() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3211162 171.5 5709258 305.0 5709258 305.0
Vcells 6346589 48.5 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colVars_X_S = colVars(X_S, na.rm = FALSE), `colVars(X, rows, cols)` = colVars(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colVars(X[rows, cols])` = colVars(X[rows, cols], na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3211153 171.5 5709258 305.0 5709258 305.0
Vcells 6356667 48.5 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowVars_X_S = rowVars(X_S, na.rm = FALSE), `rowVars(X, cols, rows)` = rowVars(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowVars(X[cols, rows])` = rowVars(X[cols, rows], na.rm = FALSE),
+ unit = "ms")Table: Benchmarking of colVars_X_S(), colVars(X, rows, cols)() and colVars(X[rows, cols])() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 0.016332 | 0.0168960 | 0.0173222 | 0.0170795 | 0.0173005 | 0.023308 |
| 2 | colVars(X, rows, cols) | 0.018221 | 0.0188985 | 0.0194106 | 0.0190740 | 0.0192600 | 0.036632 |
| 3 | colVars(X[rows, cols]) | 0.033955 | 0.0345555 | 0.0353419 | 0.0347500 | 0.0349970 | 0.087007 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | colVars(X, rows, cols) | 1.115663 | 1.118519 | 1.120566 | 1.116777 | 1.113263 | 1.571649 |
| 3 | colVars(X[rows, cols]) | 2.079047 | 2.045188 | 2.040270 | 2.034603 | 2.022889 | 3.732924 |
Table: Benchmarking of rowVars_X_S(), rowVars(X, cols, rows)() and rowVars(X[cols, rows])() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowVars_X_S | 0.014662 | 0.0151485 | 0.0158998 | 0.0154045 | 0.0162125 | 0.024328 |
| 2 | rowVars(X, cols, rows) | 0.016598 | 0.0170710 | 0.0179616 | 0.0175785 | 0.0184335 | 0.024730 |
| 3 | rowVars(X[cols, rows]) | 0.022240 | 0.0226670 | 0.0256200 | 0.0229860 | 0.0275795 | 0.065805 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowVars_X_S | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowVars(X, cols, rows) | 1.132042 | 1.12691 | 1.129678 | 1.141128 | 1.136993 | 1.016524 |
| 3 | rowVars(X[cols, rows]) | 1.516846 | 1.49632 | 1.611342 | 1.492161 | 1.701126 | 2.704908 |
Figure: Benchmarking of colVars_X_S(), colVars(X, rows, cols)() and colVars(X[rows, cols])() on double+100x100 data as well as rowVars_X_S(), rowVars(X, cols, rows)() and rowVars(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colVars_X_S() and rowVars_X_S() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowVars_X_S | 14.662 | 15.1485 | 15.89979 | 15.4045 | 16.2125 | 24.328 |
| 1 | colVars_X_S | 16.332 | 16.8960 | 17.32216 | 17.0795 | 17.3005 | 23.308 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowVars_X_S | 1.0000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 1 | colVars_X_S | 1.1139 | 1.115358 | 1.089458 | 1.108734 | 1.067109 | 0.958073 |
Figure: Benchmarking of colVars_X_S() and rowVars_X_S() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3211372 171.6 5709258 305.0 5709258 305.0
Vcells 6347997 48.5 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colVars_X_S = colVars(X_S, na.rm = FALSE), `colVars(X, rows, cols)` = colVars(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colVars(X[rows, cols])` = colVars(X[rows, cols], na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3211363 171.6 5709258 305.0 5709258 305.0
Vcells 6358075 48.6 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowVars_X_S = rowVars(X_S, na.rm = FALSE), `rowVars(X, cols, rows)` = rowVars(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowVars(X[cols, rows])` = rowVars(X[cols, rows], na.rm = FALSE),
+ unit = "ms")Table: Benchmarking of colVars_X_S(), colVars(X, rows, cols)() and colVars(X[rows, cols])() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 0.015444 | 0.0158290 | 0.0161005 | 0.0159370 | 0.0161910 | 0.020378 |
| 2 | colVars(X, rows, cols) | 0.017562 | 0.0179905 | 0.0185418 | 0.0181855 | 0.0184095 | 0.042141 |
| 3 | colVars(X[rows, cols]) | 0.031446 | 0.0317160 | 0.0319711 | 0.0318855 | 0.0321015 | 0.035536 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | colVars(X, rows, cols) | 1.137141 | 1.136553 | 1.151632 | 1.141087 | 1.137021 | 2.067966 |
| 3 | colVars(X[rows, cols]) | 2.036131 | 2.003664 | 1.985723 | 2.000722 | 1.982676 | 1.743841 |
Table: Benchmarking of rowVars_X_S(), rowVars(X, cols, rows)() and rowVars(X[cols, rows])() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowVars_X_S | 0.015967 | 0.0165265 | 0.0171066 | 0.0167420 | 0.0169395 | 0.048405 |
| 2 | rowVars(X, cols, rows) | 0.018151 | 0.0187020 | 0.0191546 | 0.0188905 | 0.0190995 | 0.033122 |
| 3 | rowVars(X[cols, rows]) | 0.025467 | 0.0260000 | 0.0264118 | 0.0262945 | 0.0265130 | 0.032970 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowVars_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | rowVars(X, cols, rows) | 1.136782 | 1.131637 | 1.119720 | 1.128330 | 1.127513 | 0.6842682 |
| 3 | rowVars(X[cols, rows]) | 1.594977 | 1.573231 | 1.543959 | 1.570571 | 1.565158 | 0.6811280 |
Figure: Benchmarking of colVars_X_S(), colVars(X, rows, cols)() and colVars(X[rows, cols])() on double+1000x10 data as well as rowVars_X_S(), rowVars(X, cols, rows)() and rowVars(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colVars_X_S() and rowVars_X_S() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 15.444 | 15.8290 | 16.10047 | 15.937 | 16.1910 | 20.378 |
| 2 | rowVars_X_S | 15.967 | 16.5265 | 17.10657 | 16.742 | 16.9395 | 48.405 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowVars_X_S | 1.033864 | 1.044065 | 1.062489 | 1.050511 | 1.046229 | 2.375356 |
Figure: Benchmarking of colVars_X_S() and rowVars_X_S() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3211578 171.6 5709258 305.0 5709258 305.0
Vcells 6348134 48.5 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colVars_X_S = colVars(X_S, na.rm = FALSE), `colVars(X, rows, cols)` = colVars(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colVars(X[rows, cols])` = colVars(X[rows, cols], na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3211569 171.6 5709258 305.0 5709258 305.0
Vcells 6358212 48.6 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowVars_X_S = rowVars(X_S, na.rm = FALSE), `rowVars(X, cols, rows)` = rowVars(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowVars(X[cols, rows])` = rowVars(X[cols, rows], na.rm = FALSE),
+ unit = "ms")Table: Benchmarking of colVars_X_S(), colVars(X, rows, cols)() and colVars(X[rows, cols])() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 0.012343 | 0.0125835 | 0.0128754 | 0.0127535 | 0.012943 | 0.016351 |
| 2 | colVars(X, rows, cols) | 0.014680 | 0.0150465 | 0.0158528 | 0.0152460 | 0.015436 | 0.060693 |
| 3 | colVars(X[rows, cols]) | 0.021432 | 0.0219820 | 0.0222984 | 0.0221635 | 0.022410 | 0.028547 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | colVars(X, rows, cols) | 1.189338 | 1.195733 | 1.231240 | 1.195437 | 1.192614 | 3.711883 |
| 3 | colVars(X[rows, cols]) | 1.736369 | 1.746891 | 1.731856 | 1.737837 | 1.731438 | 1.745887 |
Table: Benchmarking of rowVars_X_S(), rowVars(X, cols, rows)() and rowVars(X[cols, rows])() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowVars_X_S | 0.012398 | 0.0126005 | 0.0130916 | 0.0127080 | 0.0128730 | 0.044979 |
| 2 | rowVars(X, cols, rows) | 0.014325 | 0.0146930 | 0.0149353 | 0.0148545 | 0.0150325 | 0.016589 |
| 3 | rowVars(X[cols, rows]) | 0.020106 | 0.0205745 | 0.0210562 | 0.0208150 | 0.0210170 | 0.039696 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowVars_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | rowVars(X, cols, rows) | 1.155428 | 1.166065 | 1.140833 | 1.168909 | 1.167754 | 0.3688166 |
| 3 | rowVars(X[cols, rows]) | 1.621713 | 1.632832 | 1.608382 | 1.637945 | 1.632642 | 0.8825452 |
Figure: Benchmarking of colVars_X_S(), colVars(X, rows, cols)() and colVars(X[rows, cols])() on double+10x1000 data as well as rowVars_X_S(), rowVars(X, cols, rows)() and rowVars(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colVars_X_S() and rowVars_X_S() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowVars_X_S | 12.398 | 12.6005 | 13.09157 | 12.7080 | 12.873 | 44.979 |
| 1 | colVars_X_S | 12.343 | 12.5835 | 12.87543 | 12.7535 | 12.943 | 16.351 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowVars_X_S | 1.0000000 | 1.0000000 | 1.0000000 | 1.00000 | 1.000000 | 1.0000000 |
| 1 | colVars_X_S | 0.9955638 | 0.9986508 | 0.9834901 | 1.00358 | 1.005438 | 0.3635252 |
Figure: Benchmarking of colVars_X_S() and rowVars_X_S() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3211777 171.6 5709258 305.0 5709258 305.0
Vcells 6393562 48.8 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colVars_X_S = colVars(X_S, na.rm = FALSE), `colVars(X, rows, cols)` = colVars(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colVars(X[rows, cols])` = colVars(X[rows, cols], na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3211768 171.6 5709258 305.0 5709258 305.0
Vcells 6493640 49.6 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowVars_X_S = rowVars(X_S, na.rm = FALSE), `rowVars(X, cols, rows)` = rowVars(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowVars(X[cols, rows])` = rowVars(X[cols, rows], na.rm = FALSE),
+ unit = "ms")Table: Benchmarking of colVars_X_S(), colVars(X, rows, cols)() and colVars(X[rows, cols])() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 0.132621 | 0.1331495 | 0.1352413 | 0.1339040 | 0.1367870 | 0.152523 |
| 2 | colVars(X, rows, cols) | 0.148685 | 0.1493405 | 0.1522267 | 0.1496495 | 0.1532145 | 0.241755 |
| 3 | colVars(X[rows, cols]) | 0.279740 | 0.2811210 | 0.2890749 | 0.2828520 | 0.2883890 | 0.424833 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
| 2 | colVars(X, rows, cols) | 1.121127 | 1.121600 | 1.125593 | 1.117588 | 1.120095 | 1.58504 |
| 3 | colVars(X[rows, cols]) | 2.109319 | 2.111318 | 2.137476 | 2.112349 | 2.108307 | 2.78537 |
Table: Benchmarking of rowVars_X_S(), rowVars(X, cols, rows)() and rowVars(X[cols, rows])() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowVars_X_S | 0.133695 | 0.134398 | 0.1362502 | 0.1347415 | 0.1351500 | 0.220470 |
| 2 | rowVars(X, cols, rows) | 0.171305 | 0.171985 | 0.1731134 | 0.1722745 | 0.1727315 | 0.214625 |
| 3 | rowVars(X[cols, rows]) | 0.205511 | 0.212043 | 0.2188389 | 0.2163455 | 0.2195625 | 0.337731 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowVars_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | rowVars(X, cols, rows) | 1.281312 | 1.279669 | 1.270555 | 1.278556 | 1.278072 | 0.9734885 |
| 3 | rowVars(X[cols, rows]) | 1.537163 | 1.577724 | 1.606154 | 1.605634 | 1.624584 | 1.5318683 |
Figure: Benchmarking of colVars_X_S(), colVars(X, rows, cols)() and colVars(X[rows, cols])() on double+100x1000 data as well as rowVars_X_S(), rowVars(X, cols, rows)() and rowVars(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colVars_X_S() and rowVars_X_S() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 132.621 | 133.1495 | 135.2413 | 133.9040 | 136.787 | 152.523 |
| 2 | rowVars_X_S | 133.695 | 134.3980 | 136.2502 | 134.7415 | 135.150 | 220.470 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.0000000 | 1.000000 |
| 2 | rowVars_X_S | 1.008098 | 1.009377 | 1.00746 | 1.006255 | 0.9880325 | 1.445487 |
Figure: Benchmarking of colVars_X_S() and rowVars_X_S() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3211993 171.6 5709258 305.0 5709258 305.0
Vcells 6393709 48.8 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colVars_X_S = colVars(X_S, na.rm = FALSE), `colVars(X, rows, cols)` = colVars(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colVars(X[rows, cols])` = colVars(X[rows, cols], na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3211984 171.6 5709258 305.0 5709258 305.0
Vcells 6493787 49.6 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowVars_X_S = rowVars(X_S, na.rm = FALSE), `rowVars(X, cols, rows)` = rowVars(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowVars(X[cols, rows])` = rowVars(X[cols, rows], na.rm = FALSE),
+ unit = "ms")Table: Benchmarking of colVars_X_S(), colVars(X, rows, cols)() and colVars(X[rows, cols])() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 0.133038 | 0.1336935 | 0.1346256 | 0.1339455 | 0.1346845 | 0.149984 |
| 2 | colVars(X, rows, cols) | 0.150598 | 0.1512235 | 0.1520546 | 0.1514230 | 0.1517500 | 0.174728 |
| 3 | colVars(X[rows, cols]) | 0.203479 | 0.2053330 | 0.2096401 | 0.2062135 | 0.2084775 | 0.355993 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | colVars(X, rows, cols) | 1.131992 | 1.131121 | 1.129463 | 1.130482 | 1.126707 | 1.164978 |
| 3 | colVars(X[rows, cols]) | 1.529480 | 1.535849 | 1.557209 | 1.539533 | 1.547895 | 2.373540 |
Table: Benchmarking of rowVars_X_S(), rowVars(X, cols, rows)() and rowVars(X[cols, rows])() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowVars_X_S | 0.144472 | 0.1451925 | 0.1471551 | 0.1457150 | 0.1469695 | 0.190916 |
| 2 | rowVars(X, cols, rows) | 0.182163 | 0.1828565 | 0.1841734 | 0.1832290 | 0.1837845 | 0.208419 |
| 3 | rowVars(X[cols, rows]) | 0.223313 | 0.2276880 | 0.2336583 | 0.2319765 | 0.2351850 | 0.373162 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowVars_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowVars(X, cols, rows) | 1.260888 | 1.259407 | 1.251560 | 1.257448 | 1.250494 | 1.091679 |
| 3 | rowVars(X[cols, rows]) | 1.545718 | 1.568180 | 1.587837 | 1.591988 | 1.600230 | 1.954587 |
Figure: Benchmarking of colVars_X_S(), colVars(X, rows, cols)() and colVars(X[rows, cols])() on double+1000x100 data as well as rowVars_X_S(), rowVars(X, cols, rows)() and rowVars(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colVars_X_S() and rowVars_X_S() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 133.038 | 133.6935 | 134.6256 | 133.9455 | 134.6845 | 149.984 |
| 2 | rowVars_X_S | 144.472 | 145.1925 | 147.1551 | 145.7150 | 146.9695 | 190.916 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colVars_X_S | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowVars_X_S | 1.085945 | 1.08601 | 1.093069 | 1.087868 | 1.091213 | 1.272909 |
Figure: Benchmarking of colVars_X_S() and rowVars_X_S() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-6 matrixStats_0.55.0-9000 ggplot2_3.2.1
[4] knitr_1.24 R.devices_2.16.0 R.utils_2.9.0
[7] R.oo_1.22.0 R.methodsS3_1.7.1 history_0.0.0-9002
loaded via a namespace (and not attached):
[1] Biobase_2.45.0 bit64_0.9-7 splines_3.6.1
[4] network_1.15 assertthat_0.2.1 highr_0.8
[7] stats4_3.6.1 blob_1.2.0 robustbase_0.93-5
[10] pillar_1.4.2 RSQLite_2.1.2 backports_1.1.4
[13] lattice_0.20-38 glue_1.3.1 digest_0.6.20
[16] colorspace_1.4-1 sandwich_2.5-1 Matrix_1.2-17
[19] XML_3.98-1.20 lpSolve_5.6.13.3 pkgconfig_2.0.2
[22] genefilter_1.66.0 purrr_0.3.2 ergm_3.10.4
[25] xtable_1.8-4 mvtnorm_1.0-11 scales_1.0.0
[28] tibble_2.1.3 annotate_1.62.0 IRanges_2.18.2
[31] TH.data_1.0-10 withr_2.1.2 BiocGenerics_0.30.0
[34] lazyeval_0.2.2 mime_0.7 survival_2.44-1.1
[37] magrittr_1.5 crayon_1.3.4 statnet.common_4.3.0
[40] memoise_1.1.0 laeken_0.5.0 R.cache_0.13.0
[43] MASS_7.3-51.4 R.rsp_0.43.1 tools_3.6.1
[46] multcomp_1.4-10 S4Vectors_0.22.1 trust_0.1-7
[49] munsell_0.5.0 AnnotationDbi_1.46.1 compiler_3.6.1
[52] rlang_0.4.0 grid_3.6.1 RCurl_1.95-4.12
[55] cwhmisc_6.6 rappdirs_0.3.1 labeling_0.3
[58] bitops_1.0-6 base64enc_0.1-3 boot_1.3-23
[61] gtable_0.3.0 codetools_0.2-16 DBI_1.0.0
[64] markdown_1.1 R6_2.4.0 zoo_1.8-6
[67] dplyr_0.8.3 bit_1.1-14 zeallot_0.1.0
[70] parallel_3.6.1 Rcpp_1.0.2 vctrs_0.2.0
[73] DEoptimR_1.0-8 tidyselect_0.2.5 xfun_0.9
[76] coda_0.19-3 Total processing time was 23.52 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colRowVars_subset')Copyright Dongcan Jiang. Last updated on 2019-09-10 20:54:31 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>