colRowMins_subset - HenrikBengtsson/matrixStats GitHub Wiki
matrixStats: Benchmark report
This report benchmark the performance of colMins() and rowMins() on subsetted computation.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         x <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     dim(x) <- c(nrow, ncol)
+     x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = mode)> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3152524 168.4    5709258 305.0  5709258 305.0
Vcells 6113243  46.7   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMins_X_S = colMins(X_S, na.rm = FALSE), `colMins(X, rows, cols)` = colMins(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colMins(X[rows, cols])` = colMins(X[rows, cols], na.rm = FALSE), 
+     unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3150887 168.3    5709258 305.0  5709258 305.0
Vcells 6108606  46.7   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMins_X_S = rowMins(X_S, na.rm = FALSE), `rowMins(X, cols, rows)` = rowMins(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowMins(X[cols, rows])` = rowMins(X[cols, rows], na.rm = FALSE), 
+     unit = "ms")Table: Benchmarking of colMins_X_S(), colMins(X, rows, cols)() and colMins(X[rows, cols])() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 0.001007 | 0.001044 | 0.0020731 | 0.0010675 | 0.0011325 | 0.096081 | 
| 2 | colMins(X, rows, cols) | 0.001189 | 0.001262 | 0.0013410 | 0.0012940 | 0.0013335 | 0.002630 | 
| 3 | colMins(X[rows, cols]) | 0.001526 | 0.001639 | 0.0019254 | 0.0018040 | 0.0019150 | 0.008220 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | colMins(X, rows, cols) | 1.180735 | 1.208812 | 0.6468608 | 1.212178 | 1.177483 | 0.0273727 | 
| 3 | colMins(X[rows, cols]) | 1.515392 | 1.569923 | 0.9287354 | 1.689930 | 1.690949 | 0.0855528 | 
Table: Benchmarking of rowMins_X_S(), rowMins(X, cols, rows)() and rowMins(X[cols, rows])() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMins_X_S | 0.001025 | 0.0010660 | 0.0012008 | 0.0010950 | 0.0012100 | 0.004037 | 
| 2 | rowMins(X, cols, rows) | 0.001188 | 0.0012305 | 0.0023439 | 0.0012585 | 0.0013410 | 0.102176 | 
| 3 | rowMins(X[cols, rows]) | 0.001515 | 0.0016665 | 0.0019821 | 0.0017975 | 0.0019125 | 0.010462 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowMins(X, cols, rows) | 1.159024 | 1.154315 | 1.951917 | 1.149315 | 1.108264 | 25.309884 | 
| 3 | rowMins(X[cols, rows]) | 1.478049 | 1.563321 | 1.650592 | 1.641552 | 1.580579 | 2.591528 | 
Figure: Benchmarking of colMins_X_S(), colMins(X, rows, cols)() and colMins(X[rows, cols])() on integer+10x10 data as well as rowMins_X_S(), rowMins(X, cols, rows)() and rowMins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colMins_X_S() and rowMins_X_S() on integer+10x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colMins_X_S() and rowMins_X_S() on integer+10x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 1.007 | 1.044 | 2.07312 | 1.0675 | 1.1325 | 96.081 | 
| 2 | rowMins_X_S | 1.025 | 1.066 | 1.20083 | 1.0950 | 1.2100 | 4.037 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowMins_X_S | 1.017875 | 1.021073 | 0.5792381 | 1.025761 | 1.068433 | 0.0420166 | 
Figure: Benchmarking of colMins_X_S() and rowMins_X_S() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3149483 168.3    5709258 305.0  5709258 305.0
Vcells 5777465  44.1   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMins_X_S = colMins(X_S, na.rm = FALSE), `colMins(X, rows, cols)` = colMins(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colMins(X[rows, cols])` = colMins(X[rows, cols], na.rm = FALSE), 
+     unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3149477 168.3    5709258 305.0  5709258 305.0
Vcells 5782548  44.2   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMins_X_S = rowMins(X_S, na.rm = FALSE), `rowMins(X, cols, rows)` = rowMins(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowMins(X[cols, rows])` = rowMins(X[cols, rows], na.rm = FALSE), 
+     unit = "ms")Table: Benchmarking of colMins_X_S(), colMins(X, rows, cols)() and colMins(X[rows, cols])() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 0.008103 | 0.0084380 | 0.0087821 | 0.0085820 | 0.0087010 | 0.025702 | 
| 2 | colMins(X, rows, cols) | 0.010012 | 0.0105080 | 0.0108916 | 0.0106665 | 0.0108375 | 0.029379 | 
| 3 | colMins(X[rows, cols]) | 0.015774 | 0.0161075 | 0.0173583 | 0.0163135 | 0.0165875 | 0.060722 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colMins(X, rows, cols) | 1.235592 | 1.245319 | 1.240214 | 1.242892 | 1.245546 | 1.143063 | 
| 3 | colMins(X[rows, cols]) | 1.946686 | 1.908924 | 1.976561 | 1.900897 | 1.906390 | 2.362540 | 
Table: Benchmarking of rowMins_X_S(), rowMins(X, cols, rows)() and rowMins(X[cols, rows])() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMins_X_S | 0.008160 | 0.0087060 | 0.0091645 | 0.0089405 | 0.0090770 | 0.031059 | 
| 2 | rowMins(X, cols, rows) | 0.010078 | 0.0104890 | 0.0110174 | 0.0106715 | 0.0108695 | 0.041625 | 
| 3 | rowMins(X[cols, rows]) | 0.016061 | 0.0163785 | 0.0174024 | 0.0166045 | 0.0169595 | 0.062957 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowMins(X, cols, rows) | 1.235049 | 1.204801 | 1.202192 | 1.193613 | 1.197477 | 1.340191 | 
| 3 | rowMins(X[cols, rows]) | 1.968260 | 1.881289 | 1.898901 | 1.857223 | 1.868404 | 2.027013 | 
Figure: Benchmarking of colMins_X_S(), colMins(X, rows, cols)() and colMins(X[rows, cols])() on integer+100x100 data as well as rowMins_X_S(), rowMins(X, cols, rows)() and rowMins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colMins_X_S() and rowMins_X_S() on integer+100x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colMins_X_S() and rowMins_X_S() on integer+100x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 8.103 | 8.438 | 8.78207 | 8.5820 | 8.701 | 25.702 | 
| 2 | rowMins_X_S | 8.160 | 8.706 | 9.16447 | 8.9405 | 9.077 | 31.059 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowMins_X_S | 1.007034 | 1.031761 | 1.043543 | 1.041773 | 1.043213 | 1.208427 | 
Figure: Benchmarking of colMins_X_S() and rowMins_X_S() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3150238 168.3    5709258 305.0  5709258 305.0
Vcells 5781526  44.2   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMins_X_S = colMins(X_S, na.rm = FALSE), `colMins(X, rows, cols)` = colMins(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colMins(X[rows, cols])` = colMins(X[rows, cols], na.rm = FALSE), 
+     unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3150229 168.3    5709258 305.0  5709258 305.0
Vcells 5786604  44.2   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMins_X_S = rowMins(X_S, na.rm = FALSE), `rowMins(X, cols, rows)` = rowMins(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowMins(X[cols, rows])` = rowMins(X[cols, rows], na.rm = FALSE), 
+     unit = "ms")Table: Benchmarking of colMins_X_S(), colMins(X, rows, cols)() and colMins(X[rows, cols])() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 0.006183 | 0.0062850 | 0.0063967 | 0.0063365 | 0.0064430 | 0.009371 | 
| 2 | colMins(X, rows, cols) | 0.007228 | 0.0073395 | 0.0078165 | 0.0074145 | 0.0075665 | 0.039725 | 
| 3 | colMins(X[rows, cols]) | 0.013627 | 0.0138270 | 0.0143065 | 0.0139280 | 0.0141070 | 0.024549 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colMins(X, rows, cols) | 1.169012 | 1.16778 | 1.221955 | 1.170125 | 1.174375 | 4.239142 | 
| 3 | colMins(X[rows, cols]) | 2.203946 | 2.20000 | 2.236542 | 2.198059 | 2.189508 | 2.619678 | 
Table: Benchmarking of rowMins_X_S(), rowMins(X, cols, rows)() and rowMins(X[cols, rows])() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMins_X_S | 0.007216 | 0.0073390 | 0.0078905 | 0.0074255 | 0.0075010 | 0.033257 | 
| 2 | rowMins(X, cols, rows) | 0.009155 | 0.0093505 | 0.0096633 | 0.0094850 | 0.0096695 | 0.024208 | 
| 3 | rowMins(X[cols, rows]) | 0.015824 | 0.0160805 | 0.0164912 | 0.0162175 | 0.0164025 | 0.027026 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowMins(X, cols, rows) | 1.268708 | 1.274084 | 1.224670 | 1.277355 | 1.289095 | 0.7279069 | 
| 3 | rowMins(X[cols, rows]) | 2.192905 | 2.191102 | 2.090008 | 2.184028 | 2.186708 | 0.8126409 | 
Figure: Benchmarking of colMins_X_S(), colMins(X, rows, cols)() and colMins(X[rows, cols])() on integer+1000x10 data as well as rowMins_X_S(), rowMins(X, cols, rows)() and rowMins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colMins_X_S() and rowMins_X_S() on integer+1000x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colMins_X_S() and rowMins_X_S() on integer+1000x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 6.183 | 6.285 | 6.39670 | 6.3365 | 6.443 | 9.371 | 
| 2 | rowMins_X_S | 7.216 | 7.339 | 7.89051 | 7.4255 | 7.501 | 33.257 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowMins_X_S | 1.167071 | 1.167701 | 1.233528 | 1.171861 | 1.164209 | 3.548928 | 
Figure: Benchmarking of colMins_X_S() and rowMins_X_S() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3150444 168.3    5709258 305.0  5709258 305.0
Vcells 5782340  44.2   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMins_X_S = colMins(X_S, na.rm = FALSE), `colMins(X, rows, cols)` = colMins(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colMins(X[rows, cols])` = colMins(X[rows, cols], na.rm = FALSE), 
+     unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3150435 168.3    5709258 305.0  5709258 305.0
Vcells 5787418  44.2   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMins_X_S = rowMins(X_S, na.rm = FALSE), `rowMins(X, cols, rows)` = rowMins(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowMins(X[cols, rows])` = rowMins(X[cols, rows], na.rm = FALSE), 
+     unit = "ms")Table: Benchmarking of colMins_X_S(), colMins(X, rows, cols)() and colMins(X[rows, cols])() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 0.015440 | 0.0160410 | 0.0173119 | 0.0164150 | 0.0169860 | 0.046489 | 
| 2 | colMins(X, rows, cols) | 0.019607 | 0.0201470 | 0.0209749 | 0.0203700 | 0.0207395 | 0.056250 | 
| 3 | colMins(X[rows, cols]) | 0.023891 | 0.0244125 | 0.0251839 | 0.0247105 | 0.0252860 | 0.036094 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | colMins(X, rows, cols) | 1.269883 | 1.255969 | 1.211591 | 1.240938 | 1.220976 | 1.2099636 | 
| 3 | colMins(X[rows, cols]) | 1.547345 | 1.521881 | 1.454717 | 1.505361 | 1.488638 | 0.7763987 | 
Table: Benchmarking of rowMins_X_S(), rowMins(X, cols, rows)() and rowMins(X[cols, rows])() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMins_X_S | 0.014456 | 0.0153825 | 0.0161360 | 0.0157805 | 0.0162820 | 0.043553 | 
| 2 | rowMins(X, cols, rows) | 0.016715 | 0.0180190 | 0.0184808 | 0.0184615 | 0.0189255 | 0.020548 | 
| 3 | rowMins(X[cols, rows]) | 0.022135 | 0.0229640 | 0.0235515 | 0.0232960 | 0.0236960 | 0.041412 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowMins(X, cols, rows) | 1.156267 | 1.171396 | 1.145312 | 1.169893 | 1.162357 | 0.4717930 | 
| 3 | rowMins(X[cols, rows]) | 1.531198 | 1.492865 | 1.459560 | 1.476252 | 1.455350 | 0.9508415 | 
Figure: Benchmarking of colMins_X_S(), colMins(X, rows, cols)() and colMins(X[rows, cols])() on integer+10x1000 data as well as rowMins_X_S(), rowMins(X, cols, rows)() and rowMins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colMins_X_S() and rowMins_X_S() on integer+10x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colMins_X_S() and rowMins_X_S() on integer+10x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowMins_X_S | 14.456 | 15.3825 | 16.13600 | 15.7805 | 16.282 | 43.553 | 
| 1 | colMins_X_S | 15.440 | 16.0410 | 17.31188 | 16.4150 | 16.986 | 46.489 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 1 | colMins_X_S | 1.068069 | 1.042808 | 1.072873 | 1.040208 | 1.043238 | 1.067412 | 
Figure: Benchmarking of colMins_X_S() and rowMins_X_S() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3150643 168.3    5709258 305.0  5709258 305.0
Vcells 5804991  44.3   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMins_X_S = colMins(X_S, na.rm = FALSE), `colMins(X, rows, cols)` = colMins(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colMins(X[rows, cols])` = colMins(X[rows, cols], na.rm = FALSE), 
+     unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3150634 168.3    5709258 305.0  5709258 305.0
Vcells 5855069  44.7   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMins_X_S = rowMins(X_S, na.rm = FALSE), `rowMins(X, cols, rows)` = rowMins(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowMins(X[cols, rows])` = rowMins(X[cols, rows], na.rm = FALSE), 
+     unit = "ms")Table: Benchmarking of colMins_X_S(), colMins(X, rows, cols)() and colMins(X[rows, cols])() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 0.074529 | 0.075641 | 0.0762584 | 0.0761645 | 0.0765605 | 0.081771 | 
| 2 | colMins(X, rows, cols) | 0.090758 | 0.091161 | 0.0927088 | 0.0914220 | 0.0918360 | 0.182648 | 
| 3 | colMins(X[rows, cols]) | 0.146650 | 0.147896 | 0.1490799 | 0.1486230 | 0.1489930 | 0.170045 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colMins(X, rows, cols) | 1.217754 | 1.205180 | 1.215719 | 1.200323 | 1.199522 | 2.233652 | 
| 3 | colMins(X[rows, cols]) | 1.967690 | 1.955236 | 1.954930 | 1.951342 | 1.946082 | 2.079527 | 
Table: Benchmarking of rowMins_X_S(), rowMins(X, cols, rows)() and rowMins(X[cols, rows])() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMins_X_S | 0.078440 | 0.079221 | 0.0801926 | 0.079727 | 0.0801350 | 0.109325 | 
| 2 | rowMins(X, cols, rows) | 0.091313 | 0.092270 | 0.0928305 | 0.092656 | 0.0930450 | 0.108169 | 
| 3 | rowMins(X[cols, rows]) | 0.141716 | 0.142915 | 0.1445402 | 0.143378 | 0.1440585 | 0.202843 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowMins(X, cols, rows) | 1.164113 | 1.164716 | 1.157594 | 1.162166 | 1.161103 | 0.989426 | 
| 3 | rowMins(X[cols, rows]) | 1.806680 | 1.804004 | 1.802413 | 1.798362 | 1.797698 | 1.855413 | 
Figure: Benchmarking of colMins_X_S(), colMins(X, rows, cols)() and colMins(X[rows, cols])() on integer+100x1000 data as well as rowMins_X_S(), rowMins(X, cols, rows)() and rowMins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colMins_X_S() and rowMins_X_S() on integer+100x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colMins_X_S() and rowMins_X_S() on integer+100x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 74.529 | 75.641 | 76.25841 | 76.1645 | 76.5605 | 81.771 | 
| 2 | rowMins_X_S | 78.440 | 79.221 | 80.19262 | 79.7270 | 80.1350 | 109.325 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowMins_X_S | 1.052476 | 1.047329 | 1.051591 | 1.046774 | 1.046689 | 1.336965 | 
Figure: Benchmarking of colMins_X_S() and rowMins_X_S() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3150859 168.3    5709258 305.0  5709258 305.0
Vcells 5805766  44.3   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMins_X_S = colMins(X_S, na.rm = FALSE), `colMins(X, rows, cols)` = colMins(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colMins(X[rows, cols])` = colMins(X[rows, cols], na.rm = FALSE), 
+     unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3150850 168.3    5709258 305.0  5709258 305.0
Vcells 5855844  44.7   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMins_X_S = rowMins(X_S, na.rm = FALSE), `rowMins(X, cols, rows)` = rowMins(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowMins(X[cols, rows])` = rowMins(X[cols, rows], na.rm = FALSE), 
+     unit = "ms")Table: Benchmarking of colMins_X_S(), colMins(X, rows, cols)() and colMins(X[rows, cols])() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 0.053750 | 0.0541305 | 0.0544439 | 0.0542410 | 0.0544095 | 0.058897 | 
| 2 | colMins(X, rows, cols) | 0.059726 | 0.0601185 | 0.0605694 | 0.0604960 | 0.0607005 | 0.065516 | 
| 3 | colMins(X[rows, cols]) | 0.116867 | 0.1175115 | 0.1202412 | 0.1177975 | 0.1182370 | 0.194267 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colMins(X, rows, cols) | 1.111181 | 1.110622 | 1.112509 | 1.115319 | 1.115623 | 1.112383 | 
| 3 | colMins(X[rows, cols]) | 2.174270 | 2.170893 | 2.208533 | 2.171743 | 2.173095 | 3.298419 | 
Table: Benchmarking of rowMins_X_S(), rowMins(X, cols, rows)() and rowMins(X[cols, rows])() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMins_X_S | 0.059707 | 0.0601660 | 0.0630346 | 0.0604115 | 0.0608925 | 0.169952 | 
| 2 | rowMins(X, cols, rows) | 0.078534 | 0.0792310 | 0.0818430 | 0.0795230 | 0.0803055 | 0.128880 | 
| 3 | rowMins(X[cols, rows]) | 0.131064 | 0.1316015 | 0.1393021 | 0.1321350 | 0.1370090 | 0.269135 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowMins(X, cols, rows) | 1.315323 | 1.316873 | 1.298382 | 1.316355 | 1.318808 | 0.7583318 | 
| 3 | rowMins(X[cols, rows]) | 2.195120 | 2.187307 | 2.209931 | 2.187249 | 2.250014 | 1.5835942 | 
Figure: Benchmarking of colMins_X_S(), colMins(X, rows, cols)() and colMins(X[rows, cols])() on integer+1000x100 data as well as rowMins_X_S(), rowMins(X, cols, rows)() and rowMins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colMins_X_S() and rowMins_X_S() on integer+1000x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colMins_X_S() and rowMins_X_S() on integer+1000x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 53.750 | 54.1305 | 54.44393 | 54.2410 | 54.4095 | 58.897 | 
| 2 | rowMins_X_S | 59.707 | 60.1660 | 63.03461 | 60.4115 | 60.8925 | 169.952 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.00000 | 
| 2 | rowMins_X_S | 1.110828 | 1.111499 | 1.15779 | 1.113761 | 1.119152 | 2.88558 | 
Figure: Benchmarking of colMins_X_S() and rowMins_X_S() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         x <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     dim(x) <- c(nrow, ncol)
+     x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = mode)> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3151077 168.3    5709258 305.0  5709258 305.0
Vcells 5896853  45.0   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMins_X_S = colMins(X_S, na.rm = FALSE), `colMins(X, rows, cols)` = colMins(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colMins(X[rows, cols])` = colMins(X[rows, cols], na.rm = FALSE), 
+     unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3151059 168.3    5709258 305.0  5709258 305.0
Vcells 5897016  45.0   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMins_X_S = rowMins(X_S, na.rm = FALSE), `rowMins(X, cols, rows)` = rowMins(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowMins(X[cols, rows])` = rowMins(X[cols, rows], na.rm = FALSE), 
+     unit = "ms")Table: Benchmarking of colMins_X_S(), colMins(X, rows, cols)() and colMins(X[rows, cols])() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 0.000987 | 0.0010260 | 0.0013949 | 0.0010465 | 0.0011270 | 0.031114 | 
| 2 | colMins(X, rows, cols) | 0.001153 | 0.0011995 | 0.0013034 | 0.0012150 | 0.0013055 | 0.004890 | 
| 3 | colMins(X[rows, cols]) | 0.001630 | 0.0018660 | 0.0020711 | 0.0019350 | 0.0020550 | 0.010724 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colMins(X, rows, cols) | 1.168186 | 1.169103 | 0.9344044 | 1.161013 | 1.158385 | 0.157164 | 
| 3 | colMins(X[rows, cols]) | 1.651469 | 1.818714 | 1.4847266 | 1.849020 | 1.823425 | 0.344668 | 
Table: Benchmarking of rowMins_X_S(), rowMins(X, cols, rows)() and rowMins(X[cols, rows])() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMins_X_S | 0.001023 | 0.0010795 | 0.0016327 | 0.0012580 | 0.0017550 | 0.018654 | 
| 2 | rowMins(X, cols, rows) | 0.001190 | 0.0012325 | 0.0023524 | 0.0013935 | 0.0020980 | 0.033573 | 
| 3 | rowMins(X[cols, rows]) | 0.001533 | 0.0018575 | 0.0034298 | 0.0021180 | 0.0031335 | 0.039438 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowMins(X, cols, rows) | 1.163245 | 1.141732 | 1.440798 | 1.107711 | 1.195442 | 1.799775 | 
| 3 | rowMins(X[cols, rows]) | 1.498534 | 1.720704 | 2.100666 | 1.683625 | 1.785470 | 2.114185 | 
Figure: Benchmarking of colMins_X_S(), colMins(X, rows, cols)() and colMins(X[rows, cols])() on double+10x10 data as well as rowMins_X_S(), rowMins(X, cols, rows)() and rowMins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colMins_X_S() and rowMins_X_S() on double+10x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colMins_X_S() and rowMins_X_S() on double+10x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 987 | 1026.0 | 1394.91 | 1046.5 | 1127 | 31114 | 
| 2 | rowMins_X_S | 1023 | 1079.5 | 1632.72 | 1258.0 | 1755 | 18654 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowMins_X_S | 1.036474 | 1.052144 | 1.170484 | 1.202102 | 1.557232 | 0.5995372 | 
Figure: Benchmarking of colMins_X_S() and rowMins_X_S() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3151276 168.3    5709258 305.0  5709258 305.0
Vcells 5902789  45.1   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMins_X_S = colMins(X_S, na.rm = FALSE), `colMins(X, rows, cols)` = colMins(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colMins(X[rows, cols])` = colMins(X[rows, cols], na.rm = FALSE), 
+     unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3151270 168.3    5709258 305.0  5709258 305.0
Vcells 5912872  45.2   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMins_X_S = rowMins(X_S, na.rm = FALSE), `rowMins(X, cols, rows)` = rowMins(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowMins(X[cols, rows])` = rowMins(X[cols, rows], na.rm = FALSE), 
+     unit = "ms")Table: Benchmarking of colMins_X_S(), colMins(X, rows, cols)() and colMins(X[rows, cols])() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 0.006184 | 0.0064265 | 0.0067068 | 0.0066085 | 0.0068255 | 0.013146 | 
| 2 | colMins(X, rows, cols) | 0.009099 | 0.0097140 | 0.0101481 | 0.0099605 | 0.0101975 | 0.022566 | 
| 3 | colMins(X[rows, cols]) | 0.021748 | 0.0222880 | 0.0230036 | 0.0224405 | 0.0226300 | 0.067610 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colMins(X, rows, cols) | 1.471378 | 1.511554 | 1.513098 | 1.507226 | 1.494030 | 1.716568 | 
| 3 | colMins(X[rows, cols]) | 3.516818 | 3.468140 | 3.429868 | 3.395703 | 3.315508 | 5.143009 | 
Table: Benchmarking of rowMins_X_S(), rowMins(X, cols, rows)() and rowMins(X[cols, rows])() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMins_X_S | 0.008624 | 0.0089525 | 0.0116481 | 0.0092120 | 0.0150970 | 0.021944 | 
| 2 | rowMins(X, cols, rows) | 0.009992 | 0.0103655 | 0.0135867 | 0.0106055 | 0.0178595 | 0.048137 | 
| 3 | rowMins(X[cols, rows]) | 0.016129 | 0.0165445 | 0.0220870 | 0.0168990 | 0.0287240 | 0.093011 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowMins(X, cols, rows) | 1.158627 | 1.157833 | 1.166431 | 1.151270 | 1.182983 | 2.193629 | 
| 3 | rowMins(X[cols, rows]) | 1.870246 | 1.848031 | 1.896180 | 1.834455 | 1.902630 | 4.238562 | 
Figure: Benchmarking of colMins_X_S(), colMins(X, rows, cols)() and colMins(X[rows, cols])() on double+100x100 data as well as rowMins_X_S(), rowMins(X, cols, rows)() and rowMins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colMins_X_S() and rowMins_X_S() on double+100x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colMins_X_S() and rowMins_X_S() on double+100x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 6.184 | 6.4265 | 6.70685 | 6.6085 | 6.8255 | 13.146 | 
| 2 | rowMins_X_S | 8.624 | 8.9525 | 11.64813 | 9.2120 | 15.0970 | 21.944 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowMins_X_S | 1.394567 | 1.39306 | 1.736751 | 1.393962 | 2.211853 | 1.669253 | 
Figure: Benchmarking of colMins_X_S() and rowMins_X_S() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3151488 168.4    5709258 305.0  5709258 305.0
Vcells 5904199  45.1   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMins_X_S = colMins(X_S, na.rm = FALSE), `colMins(X, rows, cols)` = colMins(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colMins(X[rows, cols])` = colMins(X[rows, cols], na.rm = FALSE), 
+     unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3151479 168.4    5709258 305.0  5709258 305.0
Vcells 5914277  45.2   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMins_X_S = rowMins(X_S, na.rm = FALSE), `rowMins(X, cols, rows)` = rowMins(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowMins(X[cols, rows])` = rowMins(X[cols, rows], na.rm = FALSE), 
+     unit = "ms")Table: Benchmarking of colMins_X_S(), colMins(X, rows, cols)() and colMins(X[rows, cols])() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 0.005218 | 0.0053155 | 0.0054704 | 0.0054300 | 0.0054990 | 0.009860 | 
| 2 | colMins(X, rows, cols) | 0.008154 | 0.0083750 | 0.0090457 | 0.0084985 | 0.0085800 | 0.048029 | 
| 3 | colMins(X[rows, cols]) | 0.021047 | 0.0211990 | 0.0214584 | 0.0212870 | 0.0214135 | 0.032305 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colMins(X, rows, cols) | 1.562668 | 1.575581 | 1.653576 | 1.565101 | 1.560284 | 4.871095 | 
| 3 | colMins(X[rows, cols]) | 4.033538 | 3.988148 | 3.922643 | 3.920258 | 3.894072 | 3.276369 | 
Table: Benchmarking of rowMins_X_S(), rowMins(X, cols, rows)() and rowMins(X[cols, rows])() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMins_X_S | 0.007458 | 0.0076075 | 0.0081891 | 0.007714 | 0.0077895 | 0.034722 | 
| 2 | rowMins(X, cols, rows) | 0.009870 | 0.0101720 | 0.0111585 | 0.010446 | 0.0106920 | 0.035507 | 
| 3 | rowMins(X[cols, rows]) | 0.016553 | 0.0169660 | 0.0180078 | 0.017176 | 0.0173380 | 0.030484 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowMins(X, cols, rows) | 1.323411 | 1.337101 | 1.362612 | 1.354161 | 1.372617 | 1.0226081 | 
| 3 | rowMins(X[cols, rows]) | 2.219496 | 2.230168 | 2.198998 | 2.226601 | 2.225817 | 0.8779448 | 
Figure: Benchmarking of colMins_X_S(), colMins(X, rows, cols)() and colMins(X[rows, cols])() on double+1000x10 data as well as rowMins_X_S(), rowMins(X, cols, rows)() and rowMins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colMins_X_S() and rowMins_X_S() on double+1000x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colMins_X_S() and rowMins_X_S() on double+1000x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 5.218 | 5.3155 | 5.47038 | 5.430 | 5.4990 | 9.860 | 
| 2 | rowMins_X_S | 7.458 | 7.6075 | 8.18908 | 7.714 | 7.7895 | 34.722 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 
| 2 | rowMins_X_S | 1.429283 | 1.431192 | 1.496986 | 1.420626 | 1.41653 | 3.521501 | 
Figure: Benchmarking of colMins_X_S() and rowMins_X_S() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3151694 168.4    5709258 305.0  5709258 305.0
Vcells 5904336  45.1   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMins_X_S = colMins(X_S, na.rm = FALSE), `colMins(X, rows, cols)` = colMins(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colMins(X[rows, cols])` = colMins(X[rows, cols], na.rm = FALSE), 
+     unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3151685 168.4    5709258 305.0  5709258 305.0
Vcells 5914414  45.2   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMins_X_S = rowMins(X_S, na.rm = FALSE), `rowMins(X, cols, rows)` = rowMins(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowMins(X[cols, rows])` = rowMins(X[cols, rows], na.rm = FALSE), 
+     unit = "ms")Table: Benchmarking of colMins_X_S(), colMins(X, rows, cols)() and colMins(X[rows, cols])() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 0.010482 | 0.0134415 | 0.0162633 | 0.014586 | 0.0162500 | 0.052851 | 
| 2 | colMins(X, rows, cols) | 0.017086 | 0.0192615 | 0.0232485 | 0.020947 | 0.0248950 | 0.067751 | 
| 3 | colMins(X[rows, cols]) | 0.020228 | 0.0232960 | 0.0318441 | 0.025182 | 0.0312335 | 0.115575 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colMins(X, rows, cols) | 1.630032 | 1.432987 | 1.429507 | 1.436103 | 1.532000 | 1.281925 | 
| 3 | colMins(X[rows, cols]) | 1.929784 | 1.733140 | 1.958032 | 1.726450 | 1.922062 | 2.186808 | 
Table: Benchmarking of rowMins_X_S(), rowMins(X, cols, rows)() and rowMins(X[cols, rows])() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowMins(X, cols, rows) | 0.014360 | 0.0156900 | 0.0165315 | 0.0161350 | 0.0167755 | 0.029744 | 
| 1 | rowMins_X_S | 0.015690 | 0.0163115 | 0.0172034 | 0.0165235 | 0.0168680 | 0.047459 | 
| 3 | rowMins(X[cols, rows]) | 0.023952 | 0.0245235 | 0.0256346 | 0.0247830 | 0.0252800 | 0.047143 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowMins(X, cols, rows) | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 1 | rowMins_X_S | 1.092618 | 1.039611 | 1.040648 | 1.024078 | 1.005514 | 1.595582 | 
| 3 | rowMins(X[cols, rows]) | 1.667967 | 1.563002 | 1.550659 | 1.535978 | 1.506960 | 1.584958 | 
Figure: Benchmarking of colMins_X_S(), colMins(X, rows, cols)() and colMins(X[rows, cols])() on double+10x1000 data as well as rowMins_X_S(), rowMins(X, cols, rows)() and rowMins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colMins_X_S() and rowMins_X_S() on double+10x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colMins_X_S() and rowMins_X_S() on double+10x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 10.482 | 13.4415 | 16.26332 | 14.5860 | 16.250 | 52.851 | 
| 2 | rowMins_X_S | 15.690 | 16.3115 | 17.20343 | 16.5235 | 16.868 | 47.459 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowMins_X_S | 1.496852 | 1.213518 | 1.057805 | 1.132833 | 1.038031 | 0.8979773 | 
Figure: Benchmarking of colMins_X_S() and rowMins_X_S() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3151893 168.4    5709258 305.0  5709258 305.0
Vcells 5949763  45.4   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMins_X_S = colMins(X_S, na.rm = FALSE), `colMins(X, rows, cols)` = colMins(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colMins(X[rows, cols])` = colMins(X[rows, cols], na.rm = FALSE), 
+     unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3151884 168.4    5709258 305.0  5709258 305.0
Vcells 6049841  46.2   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMins_X_S = rowMins(X_S, na.rm = FALSE), `rowMins(X, cols, rows)` = rowMins(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowMins(X[cols, rows])` = rowMins(X[cols, rows], na.rm = FALSE), 
+     unit = "ms")Table: Benchmarking of colMins_X_S(), colMins(X, rows, cols)() and colMins(X[rows, cols])() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 0.070654 | 0.0712260 | 0.0746335 | 0.0716570 | 0.0723480 | 0.179717 | 
| 2 | colMins(X, rows, cols) | 0.101337 | 0.1029475 | 0.1096729 | 0.1034985 | 0.1051480 | 0.220491 | 
| 3 | colMins(X[rows, cols]) | 0.217890 | 0.2197500 | 0.2396077 | 0.2211550 | 0.2343535 | 0.519751 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 
| 2 | colMins(X, rows, cols) | 1.434271 | 1.445364 | 1.469487 | 1.44436 | 1.453364 | 1.226879 | 
| 3 | colMins(X[rows, cols]) | 3.083902 | 3.085250 | 3.210460 | 3.08630 | 3.239253 | 2.892053 | 
Table: Benchmarking of rowMins_X_S(), rowMins(X, cols, rows)() and rowMins(X[cols, rows])() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMins_X_S | 0.080057 | 0.080788 | 0.0817613 | 0.0810945 | 0.0815165 | 0.113188 | 
| 2 | rowMins(X, cols, rows) | 0.104103 | 0.104787 | 0.1060515 | 0.1050740 | 0.1055220 | 0.159154 | 
| 3 | rowMins(X[cols, rows]) | 0.149685 | 0.151002 | 0.1542423 | 0.1516635 | 0.1533200 | 0.264747 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowMins(X, cols, rows) | 1.300361 | 1.297061 | 1.297087 | 1.295698 | 1.294486 | 1.406103 | 
| 3 | rowMins(X[cols, rows]) | 1.869730 | 1.869114 | 1.886495 | 1.870207 | 1.880846 | 2.339002 | 
Figure: Benchmarking of colMins_X_S(), colMins(X, rows, cols)() and colMins(X[rows, cols])() on double+100x1000 data as well as rowMins_X_S(), rowMins(X, cols, rows)() and rowMins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colMins_X_S() and rowMins_X_S() on double+100x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colMins_X_S() and rowMins_X_S() on double+100x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 70.654 | 71.226 | 74.63346 | 71.6570 | 72.3480 | 179.717 | 
| 2 | rowMins_X_S | 80.057 | 80.788 | 81.76130 | 81.0945 | 81.5165 | 113.188 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowMins_X_S | 1.133085 | 1.134249 | 1.095505 | 1.131704 | 1.126728 | 0.6298124 | 
Figure: Benchmarking of colMins_X_S() and rowMins_X_S() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3152109 168.4    5709258 305.0  5709258 305.0
Vcells 5949910  45.4   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMins_X_S = colMins(X_S, na.rm = FALSE), `colMins(X, rows, cols)` = colMins(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colMins(X[rows, cols])` = colMins(X[rows, cols], na.rm = FALSE), 
+     unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3152100 168.4    5709258 305.0  5709258 305.0
Vcells 6049988  46.2   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMins_X_S = rowMins(X_S, na.rm = FALSE), `rowMins(X, cols, rows)` = rowMins(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowMins(X[cols, rows])` = rowMins(X[cols, rows], na.rm = FALSE), 
+     unit = "ms")Table: Benchmarking of colMins_X_S(), colMins(X, rows, cols)() and colMins(X[rows, cols])() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 0.044510 | 0.0449825 | 0.0457728 | 0.0451525 | 0.045462 | 0.057656 | 
| 2 | colMins(X, rows, cols) | 0.070959 | 0.0713125 | 0.0720262 | 0.0715020 | 0.071623 | 0.103060 | 
| 3 | colMins(X[rows, cols]) | 0.112394 | 0.1137555 | 0.1185828 | 0.1155100 | 0.117261 | 0.259433 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colMins(X, rows, cols) | 1.594226 | 1.585339 | 1.573556 | 1.583567 | 1.575448 | 1.787498 | 
| 3 | colMins(X[rows, cols]) | 2.525140 | 2.528884 | 2.590681 | 2.558219 | 2.579319 | 4.499670 | 
Table: Benchmarking of rowMins_X_S(), rowMins(X, cols, rows)() and rowMins(X[cols, rows])() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMins_X_S | 0.062235 | 0.0626185 | 0.0632144 | 0.0628505 | 0.0632145 | 0.072205 | 
| 2 | rowMins(X, cols, rows) | 0.087341 | 0.0878650 | 0.0885488 | 0.0881050 | 0.0883595 | 0.097590 | 
| 3 | rowMins(X[cols, rows]) | 0.136805 | 0.1380775 | 0.1413012 | 0.1389720 | 0.1399780 | 0.273315 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowMins(X, cols, rows) | 1.403406 | 1.403180 | 1.400771 | 1.401819 | 1.397773 | 1.351568 | 
| 3 | rowMins(X[cols, rows]) | 2.198200 | 2.205059 | 2.235271 | 2.211152 | 2.214334 | 3.785264 | 
Figure: Benchmarking of colMins_X_S(), colMins(X, rows, cols)() and colMins(X[rows, cols])() on double+1000x100 data as well as rowMins_X_S(), rowMins(X, cols, rows)() and rowMins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colMins_X_S() and rowMins_X_S() on double+1000x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colMins_X_S() and rowMins_X_S() on double+1000x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 44.510 | 44.9825 | 45.77285 | 45.1525 | 45.4620 | 57.656 | 
| 2 | rowMins_X_S | 62.235 | 62.6185 | 63.21435 | 62.8505 | 63.2145 | 72.205 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowMins_X_S | 1.398225 | 1.392064 | 1.381045 | 1.391961 | 1.390491 | 1.252341 | 
Figure: Benchmarking of colMins_X_S() and rowMins_X_S() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS:   /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
other attached packages:
[1] microbenchmark_1.4-6    matrixStats_0.55.0-9000 ggplot2_3.2.1          
[4] knitr_1.24              R.devices_2.16.0        R.utils_2.9.0          
[7] R.oo_1.22.0             R.methodsS3_1.7.1       history_0.0.0-9002     
loaded via a namespace (and not attached):
 [1] Biobase_2.45.0       bit64_0.9-7          splines_3.6.1       
 [4] network_1.15         assertthat_0.2.1     highr_0.8           
 [7] stats4_3.6.1         blob_1.2.0           robustbase_0.93-5   
[10] pillar_1.4.2         RSQLite_2.1.2        backports_1.1.4     
[13] lattice_0.20-38      glue_1.3.1           digest_0.6.20       
[16] colorspace_1.4-1     sandwich_2.5-1       Matrix_1.2-17       
[19] XML_3.98-1.20        lpSolve_5.6.13.3     pkgconfig_2.0.2     
[22] genefilter_1.66.0    purrr_0.3.2          ergm_3.10.4         
[25] xtable_1.8-4         mvtnorm_1.0-11       scales_1.0.0        
[28] tibble_2.1.3         annotate_1.62.0      IRanges_2.18.2      
[31] TH.data_1.0-10       withr_2.1.2          BiocGenerics_0.30.0 
[34] lazyeval_0.2.2       mime_0.7             survival_2.44-1.1   
[37] magrittr_1.5         crayon_1.3.4         statnet.common_4.3.0
[40] memoise_1.1.0        laeken_0.5.0         R.cache_0.13.0      
[43] MASS_7.3-51.4        R.rsp_0.43.1         tools_3.6.1         
[46] multcomp_1.4-10      S4Vectors_0.22.1     trust_0.1-7         
[49] munsell_0.5.0        AnnotationDbi_1.46.1 compiler_3.6.1      
[52] rlang_0.4.0          grid_3.6.1           RCurl_1.95-4.12     
[55] cwhmisc_6.6          rappdirs_0.3.1       labeling_0.3        
[58] bitops_1.0-6         base64enc_0.1-3      boot_1.3-23         
[61] gtable_0.3.0         codetools_0.2-16     DBI_1.0.0           
[64] markdown_1.1         R6_2.4.0             zoo_1.8-6           
[67] dplyr_0.8.3          bit_1.1-14           zeallot_0.1.0       
[70] parallel_3.6.1       Rcpp_1.0.2           vctrs_0.2.0         
[73] DEoptimR_1.0-8       tidyselect_0.2.5     xfun_0.9            
[76] coda_0.19-3         Total processing time was 23.58 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colRowMins_subset')Copyright Dongcan Jiang. Last updated on 2019-09-10 20:45:45 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>