colRowCumsums_subset - HenrikBengtsson/matrixStats GitHub Wiki
matrixStats: Benchmark report
This report benchmark the performance of colCumsums() and rowCumsums() on subsetted computation.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         x <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     dim(x) <- c(nrow, ncol)
+     x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = mode)> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3105970 165.9    5709258 305.0  5709258 305.0
Vcells 5780705  44.2   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumsums_X_S = colCumsums(X_S), `colCumsums(X, rows, cols)` = colCumsums(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCumsums(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3105133 165.9    5709258 305.0  5709258 305.0
Vcells 5778646  44.1   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumsums_X_S = rowCumsums(X_S), `rowCumsums(X, cols, rows)` = rowCumsums(X, 
+     rows = cols, cols = rows), `rowCumsums(X[cols, rows])` = rowCumsums(X[cols, rows]), unit = "ms")Table: Benchmarking of colCumsums_X_S(), colCumsums(X, rows, cols)() and colCummins(X[rows, cols])() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 0.000939 | 0.0011200 | 0.0020650 | 0.0011555 | 0.0012275 | 0.087492 | 
| 2 | colCumsums(X, rows, cols) | 0.001041 | 0.0012850 | 0.0013946 | 0.0013405 | 0.0014460 | 0.003240 | 
| 3 | colCummins(X[rows, cols]) | 0.001346 | 0.0017835 | 0.0019462 | 0.0018520 | 0.0019780 | 0.007500 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | colCumsums(X, rows, cols) | 1.108626 | 1.147321 | 0.6753186 | 1.160104 | 1.178004 | 0.0370320 | 
| 3 | colCummins(X[rows, cols]) | 1.433440 | 1.592411 | 0.9424563 | 1.602769 | 1.611405 | 0.0857221 | 
Table: Benchmarking of rowCumsums_X_S(), rowCumsums(X, cols, rows)() and rowCumsums(X[cols, rows])() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums_X_S | 0.000931 | 0.0011165 | 0.0012284 | 0.0011745 | 0.0012685 | 0.003049 | 
| 2 | rowCumsums(X, cols, rows) | 0.001089 | 0.0013250 | 0.0020978 | 0.0013640 | 0.0014765 | 0.070384 | 
| 3 | rowCumsums(X[cols, rows]) | 0.001458 | 0.0018305 | 0.0019678 | 0.0019260 | 0.0020250 | 0.003299 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowCumsums(X, cols, rows) | 1.169710 | 1.186744 | 1.707766 | 1.161345 | 1.163973 | 23.084290 | 
| 3 | rowCumsums(X[cols, rows]) | 1.566058 | 1.639498 | 1.601913 | 1.639847 | 1.596374 | 1.081994 | 
Figure: Benchmarking of colCumsums_X_S(), colCumsums(X, rows, cols)() and colCummins(X[rows, cols])() on integer+10x10 data as well as rowCumsums_X_S(), rowCumsums(X, cols, rows)() and rowCumsums(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on integer+10x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on integer+10x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 939 | 1120.0 | 2065.04 | 1155.5 | 1227.5 | 87492 | 
| 2 | rowCumsums_X_S | 931 | 1116.5 | 1228.40 | 1174.5 | 1268.5 | 3049 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 1.0000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowCumsums_X_S | 0.9914803 | 0.996875 | 0.5948553 | 1.016443 | 1.033401 | 0.0348489 | 
Figure: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3103717 165.8    5709258 305.0  5709258 305.0
Vcells 5447397  41.6   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumsums_X_S = colCumsums(X_S), `colCumsums(X, rows, cols)` = colCumsums(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCumsums(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3103711 165.8    5709258 305.0  5709258 305.0
Vcells 5452480  41.6   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumsums_X_S = rowCumsums(X_S), `rowCumsums(X, cols, rows)` = rowCumsums(X, 
+     rows = cols, cols = rows), `rowCumsums(X[cols, rows])` = rowCumsums(X[cols, rows]), unit = "ms")Table: Benchmarking of colCumsums_X_S(), colCumsums(X, rows, cols)() and colCummins(X[rows, cols])() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 0.008869 | 0.0091235 | 0.0092694 | 0.0091680 | 0.0092700 | 0.014002 | 
| 2 | colCumsums(X, rows, cols) | 0.011110 | 0.0113200 | 0.0115046 | 0.0114535 | 0.0115590 | 0.014769 | 
| 3 | colCummins(X[rows, cols]) | 0.016305 | 0.0167470 | 0.0176715 | 0.0168630 | 0.0170105 | 0.082477 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colCumsums(X, rows, cols) | 1.252678 | 1.240752 | 1.241135 | 1.249291 | 1.246926 | 1.054778 | 
| 3 | colCummins(X[rows, cols]) | 1.838426 | 1.835589 | 1.906441 | 1.839333 | 1.835005 | 5.890373 | 
Table: Benchmarking of rowCumsums_X_S(), rowCumsums(X, cols, rows)() and rowCumsums(X[cols, rows])() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums_X_S | 0.009590 | 0.0097690 | 0.0099306 | 0.0098405 | 0.0099825 | 0.012150 | 
| 2 | rowCumsums(X, cols, rows) | 0.012268 | 0.0125695 | 0.0127165 | 0.0126820 | 0.0127970 | 0.014458 | 
| 3 | rowCumsums(X[cols, rows]) | 0.017095 | 0.0173125 | 0.0177939 | 0.0174140 | 0.0175460 | 0.041428 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowCumsums(X, cols, rows) | 1.279249 | 1.286672 | 1.280536 | 1.288756 | 1.281943 | 1.189959 | 
| 3 | rowCumsums(X[cols, rows]) | 1.782586 | 1.772188 | 1.791829 | 1.769626 | 1.757676 | 3.409712 | 
Figure: Benchmarking of colCumsums_X_S(), colCumsums(X, rows, cols)() and colCummins(X[rows, cols])() on integer+100x100 data as well as rowCumsums_X_S(), rowCumsums(X, cols, rows)() and rowCumsums(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on integer+100x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on integer+100x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 8.869 | 9.1235 | 9.26938 | 9.1680 | 9.2700 | 14.002 | 
| 2 | rowCumsums_X_S | 9.590 | 9.7690 | 9.93058 | 9.8405 | 9.9825 | 12.150 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowCumsums_X_S | 1.081294 | 1.070751 | 1.071332 | 1.073353 | 1.076861 | 0.8677332 | 
Figure: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3104472 165.8    5709258 305.0  5709258 305.0
Vcells 5451467  41.6   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumsums_X_S = colCumsums(X_S), `colCumsums(X, rows, cols)` = colCumsums(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCumsums(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3104463 165.8    5709258 305.0  5709258 305.0
Vcells 5456545  41.7   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumsums_X_S = rowCumsums(X_S), `rowCumsums(X, cols, rows)` = rowCumsums(X, 
+     rows = cols, cols = rows), `rowCumsums(X[cols, rows])` = rowCumsums(X[cols, rows]), unit = "ms")Table: Benchmarking of colCumsums_X_S(), colCumsums(X, rows, cols)() and colCummins(X[rows, cols])() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 0.008949 | 0.0090905 | 0.0093418 | 0.0091520 | 0.0092625 | 0.019732 | 
| 2 | colCumsums(X, rows, cols) | 0.011395 | 0.0115845 | 0.0122083 | 0.0116745 | 0.0118480 | 0.047661 | 
| 3 | colCummins(X[rows, cols]) | 0.016293 | 0.0165870 | 0.0168346 | 0.0166870 | 0.0168710 | 0.021632 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colCumsums(X, rows, cols) | 1.273327 | 1.274352 | 1.306837 | 1.275623 | 1.279136 | 2.415417 | 
| 3 | colCummins(X[rows, cols]) | 1.820650 | 1.824652 | 1.802070 | 1.823317 | 1.821430 | 1.096290 | 
Table: Benchmarking of rowCumsums_X_S(), rowCumsums(X, cols, rows)() and rowCumsums(X[cols, rows])() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums_X_S | 0.010714 | 0.0109080 | 0.0114677 | 0.0109875 | 0.011069 | 0.043065 | 
| 2 | rowCumsums(X, cols, rows) | 0.014802 | 0.0150220 | 0.0154782 | 0.0151860 | 0.015338 | 0.031680 | 
| 3 | rowCumsums(X[cols, rows]) | 0.019179 | 0.0195425 | 0.0198382 | 0.0196520 | 0.019839 | 0.023206 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowCumsums(X, cols, rows) | 1.381557 | 1.377154 | 1.349721 | 1.382116 | 1.385672 | 0.7356322 | 
| 3 | rowCumsums(X[cols, rows]) | 1.790088 | 1.791575 | 1.729925 | 1.788578 | 1.792303 | 0.5388599 | 
Figure: Benchmarking of colCumsums_X_S(), colCumsums(X, rows, cols)() and colCummins(X[rows, cols])() on integer+1000x10 data as well as rowCumsums_X_S(), rowCumsums(X, cols, rows)() and rowCumsums(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on integer+1000x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on integer+1000x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 8.949 | 9.0905 | 9.34184 | 9.1520 | 9.2625 | 19.732 | 
| 2 | rowCumsums_X_S | 10.714 | 10.9080 | 11.46768 | 10.9875 | 11.0690 | 43.065 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowCumsums_X_S | 1.197229 | 1.199934 | 1.227561 | 1.200557 | 1.195034 | 2.182495 | 
Figure: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3104675 165.9    5709258 305.0  5709258 305.0
Vcells 5452292  41.6   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumsums_X_S = colCumsums(X_S), `colCumsums(X, rows, cols)` = colCumsums(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCumsums(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3104669 165.9    5709258 305.0  5709258 305.0
Vcells 5457375  41.7   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumsums_X_S = rowCumsums(X_S), `rowCumsums(X, cols, rows)` = rowCumsums(X, 
+     rows = cols, cols = rows), `rowCumsums(X[cols, rows])` = rowCumsums(X[cols, rows]), unit = "ms")Table: Benchmarking of colCumsums_X_S(), colCumsums(X, rows, cols)() and colCummins(X[rows, cols])() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 0.009662 | 0.0098340 | 0.0101049 | 0.0099030 | 0.0100350 | 0.015718 | 
| 2 | colCumsums(X, rows, cols) | 0.013462 | 0.0137585 | 0.0143464 | 0.0139055 | 0.0140770 | 0.040641 | 
| 3 | colCummins(X[rows, cols]) | 0.018098 | 0.0183240 | 0.0186441 | 0.0184445 | 0.0185825 | 0.029034 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colCumsums(X, rows, cols) | 1.393293 | 1.399075 | 1.419752 | 1.404170 | 1.402790 | 2.585634 | 
| 3 | colCummins(X[rows, cols]) | 1.873111 | 1.863331 | 1.845053 | 1.862516 | 1.851769 | 1.847182 | 
Table: Benchmarking of rowCumsums_X_S(), rowCumsums(X, cols, rows)() and rowCumsums(X[cols, rows])() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums_X_S | 0.008849 | 0.0091915 | 0.0116850 | 0.0094575 | 0.0104240 | 0.052315 | 
| 2 | rowCumsums(X, cols, rows) | 0.011865 | 0.0121505 | 0.0144906 | 0.0123160 | 0.0129315 | 0.025813 | 
| 3 | rowCumsums(X[cols, rows]) | 0.016243 | 0.0166975 | 0.0205128 | 0.0169975 | 0.0214675 | 0.036792 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowCumsums(X, cols, rows) | 1.340829 | 1.321928 | 1.240094 | 1.302247 | 1.240551 | 0.4934149 | 
| 3 | rowCumsums(X[cols, rows]) | 1.835575 | 1.816624 | 1.755473 | 1.797251 | 2.059430 | 0.7032782 | 
Figure: Benchmarking of colCumsums_X_S(), colCumsums(X, rows, cols)() and colCummins(X[rows, cols])() on integer+10x1000 data as well as rowCumsums_X_S(), rowCumsums(X, cols, rows)() and rowCumsums(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on integer+10x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on integer+10x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCumsums_X_S | 8.849 | 9.1915 | 11.68505 | 9.4575 | 10.424 | 52.315 | 
| 1 | colCumsums_X_S | 9.662 | 9.8340 | 10.10490 | 9.9030 | 10.035 | 15.718 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCumsums_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.0000000 | 1.0000000 | 
| 1 | colCumsums_X_S | 1.091875 | 1.069902 | 0.8647717 | 1.047106 | 0.9626823 | 0.3004492 | 
Figure: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3104874 165.9    5709258 305.0  5709258 305.0
Vcells 5474952  41.8   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumsums_X_S = colCumsums(X_S), `colCumsums(X, rows, cols)` = colCumsums(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCumsums(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3104868 165.9    5709258 305.0  5709258 305.0
Vcells 5525035  42.2   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumsums_X_S = rowCumsums(X_S), `rowCumsums(X, cols, rows)` = rowCumsums(X, 
+     rows = cols, cols = rows), `rowCumsums(X[cols, rows])` = rowCumsums(X[cols, rows]), unit = "ms")Table: Benchmarking of colCumsums_X_S(), colCumsums(X, rows, cols)() and colCummins(X[rows, cols])() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 0.078230 | 0.0786810 | 0.0814287 | 0.0805540 | 0.0827620 | 0.103840 | 
| 2 | colCumsums(X, rows, cols) | 0.102959 | 0.1036395 | 0.1072950 | 0.1059205 | 0.1089395 | 0.203522 | 
| 3 | colCummins(X[rows, cols]) | 0.149424 | 0.1508350 | 0.1554380 | 0.1542220 | 0.1584295 | 0.173873 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colCumsums(X, rows, cols) | 1.316106 | 1.317211 | 1.317656 | 1.314901 | 1.316299 | 1.959958 | 
| 3 | colCummins(X[rows, cols]) | 1.910060 | 1.917045 | 1.908885 | 1.914517 | 1.914278 | 1.674432 | 
Table: Benchmarking of rowCumsums_X_S(), rowCumsums(X, cols, rows)() and rowCumsums(X[cols, rows])() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums_X_S | 0.080971 | 0.0817145 | 0.0854440 | 0.0855635 | 0.0880130 | 0.113462 | 
| 2 | rowCumsums(X, cols, rows) | 0.108171 | 0.1088235 | 0.1132731 | 0.1113770 | 0.1174945 | 0.142157 | 
| 3 | rowCumsums(X[cols, rows]) | 0.144036 | 0.1455050 | 0.1515755 | 0.1504875 | 0.1561380 | 0.206613 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowCumsums(X, cols, rows) | 1.335923 | 1.331753 | 1.325699 | 1.301688 | 1.334968 | 1.252904 | 
| 3 | rowCumsums(X[cols, rows]) | 1.778859 | 1.780651 | 1.773974 | 1.758781 | 1.774033 | 1.820988 | 
Figure: Benchmarking of colCumsums_X_S(), colCumsums(X, rows, cols)() and colCummins(X[rows, cols])() on integer+100x1000 data as well as rowCumsums_X_S(), rowCumsums(X, cols, rows)() and rowCumsums(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on integer+100x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on integer+100x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 78.230 | 78.6810 | 81.42870 | 80.5540 | 82.762 | 103.840 | 
| 2 | rowCumsums_X_S | 80.971 | 81.7145 | 85.44403 | 85.5635 | 88.013 | 113.462 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowCumsums_X_S | 1.035038 | 1.038554 | 1.049311 | 1.062188 | 1.063447 | 1.092662 | 
Figure: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3105090 165.9    5709258 305.0  5709258 305.0
Vcells 5475735  41.8   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumsums_X_S = colCumsums(X_S), `colCumsums(X, rows, cols)` = colCumsums(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCumsums(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3105084 165.9    5709258 305.0  5709258 305.0
Vcells 5525818  42.2   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumsums_X_S = rowCumsums(X_S), `rowCumsums(X, cols, rows)` = rowCumsums(X, 
+     rows = cols, cols = rows), `rowCumsums(X[cols, rows])` = rowCumsums(X[cols, rows]), unit = "ms")Table: Benchmarking of colCumsums_X_S(), colCumsums(X, rows, cols)() and colCummins(X[rows, cols])() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 0.077934 | 0.0782450 | 0.0803459 | 0.078739 | 0.0804590 | 0.109437 | 
| 2 | colCumsums(X, rows, cols) | 0.099019 | 0.0995635 | 0.1012852 | 0.099995 | 0.1021710 | 0.117236 | 
| 3 | colCummins(X[rows, cols]) | 0.140786 | 0.1417705 | 0.1463169 | 0.143043 | 0.1465325 | 0.230693 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colCumsums(X, rows, cols) | 1.270549 | 1.272458 | 1.260614 | 1.269955 | 1.269852 | 1.071265 | 
| 3 | colCummins(X[rows, cols]) | 1.806477 | 1.811879 | 1.821088 | 1.816673 | 1.821207 | 2.107998 | 
Table: Benchmarking of rowCumsums_X_S(), rowCumsums(X, cols, rows)() and rowCumsums(X[cols, rows])() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums_X_S | 0.082305 | 0.0829885 | 0.0862274 | 0.0846445 | 0.0870410 | 0.158487 | 
| 2 | rowCumsums(X, cols, rows) | 0.113623 | 0.1142715 | 0.1176942 | 0.1168425 | 0.1201635 | 0.138408 | 
| 3 | rowCumsums(X[cols, rows]) | 0.153269 | 0.1543100 | 0.1599422 | 0.1575415 | 0.1617135 | 0.256837 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowCumsums(X, cols, rows) | 1.380511 | 1.376956 | 1.364928 | 1.380391 | 1.380539 | 0.8733082 | 
| 3 | rowCumsums(X[cols, rows]) | 1.862208 | 1.859414 | 1.854888 | 1.861214 | 1.857900 | 1.6205556 | 
Figure: Benchmarking of colCumsums_X_S(), colCumsums(X, rows, cols)() and colCummins(X[rows, cols])() on integer+1000x100 data as well as rowCumsums_X_S(), rowCumsums(X, cols, rows)() and rowCumsums(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on integer+1000x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on integer+1000x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 77.934 | 78.2450 | 80.34589 | 78.7390 | 80.459 | 109.437 | 
| 2 | rowCumsums_X_S | 82.305 | 82.9885 | 86.22741 | 84.6445 | 87.041 | 158.487 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowCumsums_X_S | 1.056086 | 1.060624 | 1.073203 | 1.075001 | 1.081806 | 1.448203 | 
Figure: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         x <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     dim(x) <- c(nrow, ncol)
+     x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = mode)> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3105308 165.9    5709258 305.0  5709258 305.0
Vcells 5566835  42.5   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumsums_X_S = colCumsums(X_S), `colCumsums(X, rows, cols)` = colCumsums(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCumsums(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3105293 165.9    5709258 305.0  5709258 305.0
Vcells 5567003  42.5   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumsums_X_S = rowCumsums(X_S), `rowCumsums(X, cols, rows)` = rowCumsums(X, 
+     rows = cols, cols = rows), `rowCumsums(X[cols, rows])` = rowCumsums(X[cols, rows]), unit = "ms")Table: Benchmarking of colCumsums_X_S(), colCumsums(X, rows, cols)() and colCummins(X[rows, cols])() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 0.000938 | 0.0011375 | 0.0015186 | 0.0011875 | 0.0012815 | 0.026436 | 
| 2 | colCumsums(X, rows, cols) | 0.001044 | 0.0013230 | 0.0014886 | 0.0013670 | 0.0014235 | 0.006763 | 
| 3 | colCummins(X[rows, cols]) | 0.001757 | 0.0019595 | 0.0021692 | 0.0020345 | 0.0021905 | 0.009067 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | colCumsums(X, rows, cols) | 1.113006 | 1.163077 | 0.9802775 | 1.151158 | 1.110808 | 0.2558254 | 
| 3 | colCummins(X[rows, cols]) | 1.873134 | 1.722637 | 1.4284294 | 1.713263 | 1.709325 | 0.3429793 | 
Table: Benchmarking of rowCumsums_X_S(), rowCumsums(X, cols, rows)() and rowCumsums(X[cols, rows])() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums_X_S | 0.000947 | 0.0011905 | 0.0013071 | 0.0012345 | 0.0013740 | 0.003033 | 
| 2 | rowCumsums(X, cols, rows) | 0.001155 | 0.0013475 | 0.0017449 | 0.0014045 | 0.0015155 | 0.030485 | 
| 3 | rowCumsums(X[cols, rows]) | 0.001381 | 0.0018905 | 0.0020243 | 0.0019665 | 0.0020785 | 0.005972 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowCumsums(X, cols, rows) | 1.219641 | 1.131877 | 1.334894 | 1.137708 | 1.102984 | 10.051104 | 
| 3 | rowCumsums(X[cols, rows]) | 1.458289 | 1.587988 | 1.548691 | 1.592953 | 1.512736 | 1.969008 | 
Figure: Benchmarking of colCumsums_X_S(), colCumsums(X, rows, cols)() and colCummins(X[rows, cols])() on double+10x10 data as well as rowCumsums_X_S(), rowCumsums(X, cols, rows)() and rowCumsums(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on double+10x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on double+10x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 938 | 1137.5 | 1518.57 | 1187.5 | 1281.5 | 26436 | 
| 2 | rowCumsums_X_S | 947 | 1190.5 | 1307.13 | 1234.5 | 1374.0 | 3033 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowCumsums_X_S | 1.009595 | 1.046593 | 0.8607637 | 1.039579 | 1.072181 | 0.1147299 | 
Figure: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3105510 165.9    5709258 305.0  5709258 305.0
Vcells 5572787  42.6   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumsums_X_S = colCumsums(X_S), `colCumsums(X, rows, cols)` = colCumsums(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCumsums(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3105504 165.9    5709258 305.0  5709258 305.0
Vcells 5582870  42.6   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumsums_X_S = rowCumsums(X_S), `rowCumsums(X, cols, rows)` = rowCumsums(X, 
+     rows = cols, cols = rows), `rowCumsums(X[cols, rows])` = rowCumsums(X[cols, rows]), unit = "ms")Table: Benchmarking of colCumsums_X_S(), colCumsums(X, rows, cols)() and colCummins(X[rows, cols])() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 0.004876 | 0.0056105 | 0.0066016 | 0.0064030 | 0.0067430 | 0.037518 | 
| 2 | colCumsums(X, rows, cols) | 0.007201 | 0.0075240 | 0.0081006 | 0.0078355 | 0.0082150 | 0.020917 | 
| 3 | colCummins(X[rows, cols]) | 0.020606 | 0.0212055 | 0.0225128 | 0.0219750 | 0.0226015 | 0.068757 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | colCumsums(X, rows, cols) | 1.476825 | 1.341057 | 1.227069 | 1.223723 | 1.218301 | 0.5575191 | 
| 3 | colCummins(X[rows, cols]) | 4.226005 | 3.779610 | 3.410198 | 3.431985 | 3.351846 | 1.8326403 | 
Table: Benchmarking of rowCumsums_X_S(), rowCumsums(X, cols, rows)() and rowCumsums(X[cols, rows])() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums_X_S | 0.004867 | 0.0058470 | 0.0064340 | 0.0066000 | 0.0069015 | 0.010937 | 
| 2 | rowCumsums(X, cols, rows) | 0.006910 | 0.0075175 | 0.0078658 | 0.0077545 | 0.0080020 | 0.012799 | 
| 3 | rowCumsums(X[cols, rows]) | 0.011983 | 0.0127130 | 0.0147156 | 0.0142500 | 0.0146890 | 0.056751 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowCumsums(X, cols, rows) | 1.419766 | 1.285702 | 1.222538 | 1.174924 | 1.159458 | 1.170248 | 
| 3 | rowCumsums(X[cols, rows]) | 2.462092 | 2.174277 | 2.287184 | 2.159091 | 2.128378 | 5.188900 | 
Figure: Benchmarking of colCumsums_X_S(), colCumsums(X, rows, cols)() and colCummins(X[rows, cols])() on double+100x100 data as well as rowCumsums_X_S(), rowCumsums(X, cols, rows)() and rowCumsums(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on double+100x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on double+100x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 4.876 | 5.6105 | 6.60160 | 6.403 | 6.7430 | 37.518 | 
| 2 | rowCumsums_X_S | 4.867 | 5.8470 | 6.43396 | 6.600 | 6.9015 | 10.937 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 1.0000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowCumsums_X_S | 0.9981542 | 1.042153 | 0.9746062 | 1.030767 | 1.023506 | 0.2915134 | 
Figure: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3105719 165.9    5709258 305.0  5709258 305.0
Vcells 5574202  42.6   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumsums_X_S = colCumsums(X_S), `colCumsums(X, rows, cols)` = colCumsums(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCumsums(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3105713 165.9    5709258 305.0  5709258 305.0
Vcells 5584285  42.7   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumsums_X_S = rowCumsums(X_S), `rowCumsums(X, cols, rows)` = rowCumsums(X, 
+     rows = cols, cols = rows), `rowCumsums(X[cols, rows])` = rowCumsums(X[cols, rows]), unit = "ms")Table: Benchmarking of colCumsums_X_S(), colCumsums(X, rows, cols)() and colCummins(X[rows, cols])() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 0.006142 | 0.0065105 | 0.0070593 | 0.0067060 | 0.0069005 | 0.037865 | 
| 2 | colCumsums(X, rows, cols) | 0.007279 | 0.0077485 | 0.0083504 | 0.0079780 | 0.0082525 | 0.033318 | 
| 3 | colCummins(X[rows, cols]) | 0.021825 | 0.0221825 | 0.0226832 | 0.0224665 | 0.0227530 | 0.032226 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | colCumsums(X, rows, cols) | 1.185119 | 1.190154 | 1.182901 | 1.189681 | 1.195928 | 0.8799155 | 
| 3 | colCummins(X[rows, cols]) | 3.553403 | 3.407188 | 3.213236 | 3.350209 | 3.297297 | 0.8510762 | 
Table: Benchmarking of rowCumsums_X_S(), rowCumsums(X, cols, rows)() and rowCumsums(X[cols, rows])() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums_X_S | 0.005536 | 0.0063860 | 0.0079109 | 0.0070035 | 0.0075925 | 0.066193 | 
| 2 | rowCumsums(X, cols, rows) | 0.008967 | 0.0096615 | 0.0112197 | 0.0100155 | 0.0103615 | 0.050766 | 
| 3 | rowCumsums(X[cols, rows]) | 0.014483 | 0.0153645 | 0.0165678 | 0.0160385 | 0.0167525 | 0.057295 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowCumsums(X, cols, rows) | 1.619762 | 1.512919 | 1.418253 | 1.430071 | 1.364702 | 0.7669391 | 
| 3 | rowCumsums(X[cols, rows]) | 2.616149 | 2.405966 | 2.094297 | 2.290069 | 2.206454 | 0.8655749 | 
Figure: Benchmarking of colCumsums_X_S(), colCumsums(X, rows, cols)() and colCummins(X[rows, cols])() on double+1000x10 data as well as rowCumsums_X_S(), rowCumsums(X, cols, rows)() and rowCumsums(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on double+1000x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on double+1000x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 6.142 | 6.5105 | 7.0593 | 6.7060 | 6.9005 | 37.865 | 
| 2 | rowCumsums_X_S | 5.536 | 6.3860 | 7.9109 | 7.0035 | 7.5925 | 66.193 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowCumsums_X_S | 0.9013351 | 0.980877 | 1.120635 | 1.044363 | 1.100283 | 1.748131 | 
Figure: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3105925 165.9    5709258 305.0  5709258 305.0
Vcells 5574339  42.6   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumsums_X_S = colCumsums(X_S), `colCumsums(X, rows, cols)` = colCumsums(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCumsums(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3105919 165.9    5709258 305.0  5709258 305.0
Vcells 5584422  42.7   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumsums_X_S = rowCumsums(X_S), `rowCumsums(X, cols, rows)` = rowCumsums(X, 
+     rows = cols, cols = rows), `rowCumsums(X[cols, rows])` = rowCumsums(X[cols, rows]), unit = "ms")Table: Benchmarking of colCumsums_X_S(), colCumsums(X, rows, cols)() and colCummins(X[rows, cols])() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 0.005284 | 0.0059175 | 0.0064668 | 0.006455 | 0.0069105 | 0.010176 | 
| 2 | colCumsums(X, rows, cols) | 0.008730 | 0.0093220 | 0.0099642 | 0.009489 | 0.0096980 | 0.053247 | 
| 3 | colCummins(X[rows, cols]) | 0.014206 | 0.0152290 | 0.0163452 | 0.016003 | 0.0164475 | 0.045689 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colCumsums(X, rows, cols) | 1.652157 | 1.575327 | 1.540837 | 1.470023 | 1.403372 | 5.232606 | 
| 3 | colCummins(X[rows, cols]) | 2.688494 | 2.573553 | 2.527574 | 2.479163 | 2.380074 | 4.489878 | 
Table: Benchmarking of rowCumsums_X_S(), rowCumsums(X, cols, rows)() and rowCumsums(X[cols, rows])() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums_X_S | 0.004262 | 0.0048790 | 0.0059595 | 0.0059720 | 0.0064010 | 0.023056 | 
| 2 | rowCumsums(X, cols, rows) | 0.006723 | 0.0071615 | 0.0075589 | 0.0074525 | 0.0078235 | 0.012179 | 
| 3 | rowCumsums(X[cols, rows]) | 0.011846 | 0.0124505 | 0.0140730 | 0.0138305 | 0.0143600 | 0.048729 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowCumsums(X, cols, rows) | 1.577428 | 1.467821 | 1.268388 | 1.247907 | 1.222231 | 0.5282356 | 
| 3 | rowCumsums(X[cols, rows]) | 2.779446 | 2.551855 | 2.361452 | 2.315891 | 2.243400 | 2.1135062 | 
Figure: Benchmarking of colCumsums_X_S(), colCumsums(X, rows, cols)() and colCummins(X[rows, cols])() on double+10x1000 data as well as rowCumsums_X_S(), rowCumsums(X, cols, rows)() and rowCumsums(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on double+10x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on double+10x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCumsums_X_S | 4.262 | 4.8790 | 5.95946 | 5.972 | 6.4010 | 23.056 | 
| 1 | colCumsums_X_S | 5.284 | 5.9175 | 6.46677 | 6.455 | 6.9105 | 10.176 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 1 | colCumsums_X_S | 1.239793 | 1.212851 | 1.085127 | 1.080877 | 1.079597 | 0.4413602 | 
Figure: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3106124 165.9    5709258 305.0  5709258 305.0
Vcells 5619780  42.9   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumsums_X_S = colCumsums(X_S), `colCumsums(X, rows, cols)` = colCumsums(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCumsums(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3106118 165.9    5709258 305.0  5709258 305.0
Vcells 5719863  43.7   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumsums_X_S = rowCumsums(X_S), `rowCumsums(X, cols, rows)` = rowCumsums(X, 
+     rows = cols, cols = rows), `rowCumsums(X[cols, rows])` = rowCumsums(X[cols, rows]), unit = "ms")Table: Benchmarking of colCumsums_X_S(), colCumsums(X, rows, cols)() and colCummins(X[rows, cols])() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 0.040634 | 0.0427765 | 0.0919119 | 0.0517375 | 0.145239 | 0.184779 | 
| 2 | colCumsums(X, rows, cols) | 0.065526 | 0.0666270 | 0.1077700 | 0.0780885 | 0.170729 | 0.177745 | 
| 3 | colCummins(X[rows, cols]) | 0.192238 | 0.1949405 | 0.3477559 | 0.2299750 | 0.398020 | 7.181248 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | colCumsums(X, rows, cols) | 1.612590 | 1.557561 | 1.172537 | 1.509321 | 1.175504 | 0.9619329 | 
| 3 | colCummins(X[rows, cols]) | 4.730964 | 4.557187 | 3.783581 | 4.445035 | 2.740448 | 38.8639835 | 
Table: Benchmarking of rowCumsums_X_S(), rowCumsums(X, cols, rows)() and rowCumsums(X[cols, rows])() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums_X_S | 0.033994 | 0.0367225 | 0.0760651 | 0.0410395 | 0.1332505 | 0.160762 | 
| 2 | rowCumsums(X, cols, rows) | 0.057126 | 0.0582200 | 0.1013315 | 0.0705625 | 0.1619285 | 0.176954 | 
| 3 | rowCumsums(X[cols, rows]) | 0.107283 | 0.1113780 | 0.2644410 | 0.1324595 | 0.3065900 | 7.016414 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.00000 | 
| 2 | rowCumsums(X, cols, rows) | 1.680473 | 1.585404 | 1.332168 | 1.71938 | 1.215219 | 1.10072 | 
| 3 | rowCumsums(X[cols, rows]) | 3.155939 | 3.032963 | 3.476510 | 3.22761 | 2.300854 | 43.64473 | 
Figure: Benchmarking of colCumsums_X_S(), colCumsums(X, rows, cols)() and colCummins(X[rows, cols])() on double+100x1000 data as well as rowCumsums_X_S(), rowCumsums(X, cols, rows)() and rowCumsums(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on double+100x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on double+100x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCumsums_X_S | 33.994 | 36.7225 | 76.06506 | 41.0395 | 133.2505 | 160.762 | 
| 1 | colCumsums_X_S | 40.634 | 42.7765 | 91.91186 | 51.7375 | 145.2390 | 184.779 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 
| 1 | colCumsums_X_S | 1.195329 | 1.164858 | 1.208332 | 1.260676 | 1.08997 | 1.149395 | 
Figure: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3106340 165.9    5709258 305.0  5709258 305.0
Vcells 5619927  42.9   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumsums_X_S = colCumsums(X_S), `colCumsums(X, rows, cols)` = colCumsums(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCumsums(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3106334 165.9    5709258 305.0  5709258 305.0
Vcells 5720010  43.7   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumsums_X_S = rowCumsums(X_S), `rowCumsums(X, cols, rows)` = rowCumsums(X, 
+     rows = cols, cols = rows), `rowCumsums(X[cols, rows])` = rowCumsums(X[cols, rows]), unit = "ms")Table: Benchmarking of colCumsums_X_S(), colCumsums(X, rows, cols)() and colCummins(X[rows, cols])() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 0.052020 | 0.053259 | 0.1602918 | 0.0632195 | 0.1511970 | 6.956892 | 
| 2 | colCumsums(X, rows, cols) | 0.060491 | 0.061178 | 0.1039356 | 0.0709300 | 0.1602520 | 0.193273 | 
| 3 | colCummins(X[rows, cols]) | 0.120244 | 0.123329 | 0.2090293 | 0.1475340 | 0.3202545 | 0.336265 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | colCumsums(X, rows, cols) | 1.162841 | 1.148689 | 0.6484149 | 1.121964 | 1.059889 | 0.0277815 | 
| 3 | colCummins(X[rows, cols]) | 2.311496 | 2.315646 | 1.3040547 | 2.333679 | 2.118127 | 0.0483355 | 
Table: Benchmarking of rowCumsums_X_S(), rowCumsums(X, cols, rows)() and rowCumsums(X[cols, rows])() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums_X_S | 0.039218 | 0.0415890 | 0.0815020 | 0.0467490 | 0.1326775 | 0.140161 | 
| 2 | rowCumsums(X, cols, rows) | 0.065406 | 0.0670280 | 0.1750258 | 0.0777910 | 0.1651680 | 6.323510 | 
| 3 | rowCumsums(X[cols, rows]) | 0.117334 | 0.1217225 | 0.1912891 | 0.1341145 | 0.3057490 | 0.319153 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowCumsums(X, cols, rows) | 1.667755 | 1.611676 | 2.147504 | 1.664014 | 1.244883 | 45.116045 | 
| 3 | rowCumsums(X[cols, rows]) | 2.991840 | 2.926795 | 2.347049 | 2.868821 | 2.304453 | 2.277046 | 
Figure: Benchmarking of colCumsums_X_S(), colCumsums(X, rows, cols)() and colCummins(X[rows, cols])() on double+1000x100 data as well as rowCumsums_X_S(), rowCumsums(X, cols, rows)() and rowCumsums(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on double+1000x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on double+1000x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCumsums_X_S | 39.218 | 41.589 | 81.50198 | 46.7490 | 132.6775 | 140.161 | 
| 1 | colCumsums_X_S | 52.020 | 53.259 | 160.29184 | 63.2195 | 151.1970 | 6956.892 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCumsums_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 
| 1 | colCumsums_X_S | 1.326432 | 1.280603 | 1.966723 | 1.352318 | 1.139583 | 49.63501 | 
Figure: Benchmarking of colCumsums_X_S() and rowCumsums_X_S() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS:   /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
other attached packages:
[1] microbenchmark_1.4-6    matrixStats_0.55.0-9000 ggplot2_3.2.1          
[4] knitr_1.24              R.devices_2.16.0        R.utils_2.9.0          
[7] R.oo_1.22.0             R.methodsS3_1.7.1       history_0.0.0-9002     
loaded via a namespace (and not attached):
 [1] Biobase_2.45.0       bit64_0.9-7          splines_3.6.1       
 [4] network_1.15         assertthat_0.2.1     highr_0.8           
 [7] stats4_3.6.1         blob_1.2.0           robustbase_0.93-5   
[10] pillar_1.4.2         RSQLite_2.1.2        backports_1.1.4     
[13] lattice_0.20-38      glue_1.3.1           digest_0.6.20       
[16] colorspace_1.4-1     sandwich_2.5-1       Matrix_1.2-17       
[19] XML_3.98-1.20        lpSolve_5.6.13.3     pkgconfig_2.0.2     
[22] genefilter_1.66.0    purrr_0.3.2          ergm_3.10.4         
[25] xtable_1.8-4         mvtnorm_1.0-11       scales_1.0.0        
[28] tibble_2.1.3         annotate_1.62.0      IRanges_2.18.2      
[31] TH.data_1.0-10       withr_2.1.2          BiocGenerics_0.30.0 
[34] lazyeval_0.2.2       mime_0.7             survival_2.44-1.1   
[37] magrittr_1.5         crayon_1.3.4         statnet.common_4.3.0
[40] memoise_1.1.0        laeken_0.5.0         R.cache_0.13.0      
[43] MASS_7.3-51.4        R.rsp_0.43.1         tools_3.6.1         
[46] multcomp_1.4-10      S4Vectors_0.22.1     trust_0.1-7         
[49] munsell_0.5.0        AnnotationDbi_1.46.1 compiler_3.6.1      
[52] rlang_0.4.0          grid_3.6.1           RCurl_1.95-4.12     
[55] cwhmisc_6.6          rappdirs_0.3.1       labeling_0.3        
[58] bitops_1.0-6         base64enc_0.1-3      boot_1.3-23         
[61] gtable_0.3.0         codetools_0.2-16     DBI_1.0.0           
[64] markdown_1.1         R6_2.4.0             zoo_1.8-6           
[67] dplyr_0.8.3          bit_1.1-14           zeallot_0.1.0       
[70] parallel_3.6.1       Rcpp_1.0.2           vctrs_0.2.0         
[73] DEoptimR_1.0-8       tidyselect_0.2.5     xfun_0.9            
[76] coda_0.19-3         Total processing time was 22.49 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colRowCumsums_subset')Copyright Dongcan Jiang. Last updated on 2019-09-10 20:39:27 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>