colRowCumsums - HenrikBengtsson/matrixStats GitHub Wiki
matrixStats: Benchmark report
This report benchmark the performance of colCumsums() and rowCumsums() against alternative methods.
- apply() + cumsum()
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         x <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     dim(x) <- c(nrow, ncol)
+     x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = mode)> X <- data[["10x10"]]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3110114 166.1    5709258 305.0  5709258 305.0
Vcells 5857289  44.7   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumsums = colCumsums(X), `apply+cumsum` = apply(X, MARGIN = 2L, FUN = cumsum), 
+     unit = "ms")
> X <- t(X)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3108840 166.1    5709258 305.0  5709258 305.0
Vcells 5853677  44.7   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumsums = rowCumsums(X), `apply+cumsum` = apply(X, MARGIN = 1L, FUN = cumsum), 
+     unit = "ms")Table: Benchmarking of colCumsums() and apply+cumsum() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 0.001095 | 0.001293 | 0.0016890 | 0.00155 | 0.001870 | 0.009225 | 
| 2 | apply+cumsum | 0.024941 | 0.025709 | 0.0269915 | 0.02597 | 0.026415 | 0.100546 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.0000 | 
| 2 | apply+cumsum | 22.77717 | 19.88322 | 15.98087 | 16.75484 | 14.12567 | 10.8993 | 
Table: Benchmarking of rowCumsums() and apply+cumsum() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums | 0.001051 | 0.001536 | 0.0018836 | 0.0018205 | 0.0019985 | 0.011396 | 
| 2 | apply+cumsum | 0.024872 | 0.025617 | 0.0274043 | 0.0260060 | 0.0265870 | 0.129755 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 
| 2 | apply+cumsum | 23.66508 | 16.67773 | 14.54928 | 14.28509 | 13.30348 | 11.38601 | 
Figure: Benchmarking of colCumsums() and apply+cumsum() on integer+10x10 data as well as rowCumsums() and apply+cumsum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCumsums() and rowCumsums() on integer+10x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCumsums() and rowCumsums() on integer+10x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 1.095 | 1.293 | 1.68899 | 1.5500 | 1.8700 | 9.225 | 
| 2 | rowCumsums | 1.051 | 1.536 | 1.88355 | 1.8205 | 1.9985 | 11.396 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowCumsums | 0.9598174 | 1.187935 | 1.115193 | 1.174516 | 1.068717 | 1.235339 | 
Figure: Benchmarking of colCumsums() and rowCumsums() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x100"]]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3107395 166.0    5709258 305.0  5709258 305.0
Vcells 5470168  41.8   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumsums = colCumsums(X), `apply+cumsum` = apply(X, MARGIN = 2L, FUN = cumsum), 
+     unit = "ms")
> X <- t(X)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3107389 166.0    5709258 305.0  5709258 305.0
Vcells 5475211  41.8   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumsums = rowCumsums(X), `apply+cumsum` = apply(X, MARGIN = 1L, FUN = cumsum), 
+     unit = "ms")Table: Benchmarking of colCumsums() and apply+cumsum() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 0.017256 | 0.0176950 | 0.0185754 | 0.0179605 | 0.018402 | 0.048429 | 
| 2 | apply+cumsum | 0.171849 | 0.1742205 | 0.1802480 | 0.1754160 | 0.178504 | 0.320220 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 
| 2 | apply+cumsum | 9.958797 | 9.845747 | 9.703563 | 9.766766 | 9.70025 | 6.612154 | 
Table: Benchmarking of rowCumsums() and apply+cumsum() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums | 0.018053 | 0.0184745 | 0.0195422 | 0.018860 | 0.0192855 | 0.043532 | 
| 2 | apply+cumsum | 0.172852 | 0.1743155 | 0.1798394 | 0.175312 | 0.1766195 | 0.349658 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.00000 | 1.000000 | 
| 2 | apply+cumsum | 9.574697 | 9.435465 | 9.202626 | 9.29544 | 9.15815 | 8.032206 | 
Figure: Benchmarking of colCumsums() and apply+cumsum() on integer+100x100 data as well as rowCumsums() and apply+cumsum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCumsums() and rowCumsums() on integer+100x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCumsums() and rowCumsums() on integer+100x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 17.256 | 17.6950 | 18.57544 | 17.9605 | 18.4020 | 48.429 | 
| 2 | rowCumsums | 18.053 | 18.4745 | 19.54218 | 18.8600 | 19.2855 | 43.532 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowCumsums | 1.046187 | 1.044052 | 1.052044 | 1.050082 | 1.048011 | 0.8988829 | 
Figure: Benchmarking of colCumsums() and rowCumsums() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x10"]]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3108128 166.0    5709258 305.0  5709258 305.0
Vcells 5473681  41.8   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumsums = colCumsums(X), `apply+cumsum` = apply(X, MARGIN = 2L, FUN = cumsum), 
+     unit = "ms")
> X <- t(X)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3108119 166.0    5709258 305.0  5709258 305.0
Vcells 5478719  41.8   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumsums = rowCumsums(X), `apply+cumsum` = apply(X, MARGIN = 1L, FUN = cumsum), 
+     unit = "ms")Table: Benchmarking of colCumsums() and apply+cumsum() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 0.016687 | 0.017090 | 0.0179091 | 0.0174425 | 0.0177965 | 0.048515 | 
| 2 | apply+cumsum | 0.106618 | 0.111433 | 0.1137818 | 0.1125610 | 0.1145365 | 0.199408 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000 | 1.000000 | 
| 2 | apply+cumsum | 6.389285 | 6.520363 | 6.353298 | 6.453261 | 6.4359 | 4.110234 | 
Table: Benchmarking of rowCumsums() and apply+cumsum() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums | 0.019551 | 0.0200910 | 0.0243383 | 0.0204990 | 0.0209795 | 0.296231 | 
| 2 | apply+cumsum | 0.102220 | 0.1078475 | 0.1167199 | 0.1107865 | 0.1116970 | 0.717267 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 
| 2 | apply+cumsum | 5.228377 | 5.367951 | 4.795729 | 5.404483 | 5.324102 | 2.42131 | 
Figure: Benchmarking of colCumsums() and apply+cumsum() on integer+1000x10 data as well as rowCumsums() and apply+cumsum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCumsums() and rowCumsums() on integer+1000x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCumsums() and rowCumsums() on integer+1000x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 16.687 | 17.090 | 17.9091 | 17.4425 | 17.7965 | 48.515 | 
| 2 | rowCumsums | 19.551 | 20.091 | 24.3383 | 20.4990 | 20.9795 | 296.231 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 1.000000 | 1.0000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowCumsums | 1.171631 | 1.1756 | 1.358991 | 1.175233 | 1.178855 | 6.105967 | 
Figure: Benchmarking of colCumsums() and rowCumsums() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["10x1000"]]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3108314 166.1    5709258 305.0  5709258 305.0
Vcells 5474366  41.8   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumsums = colCumsums(X), `apply+cumsum` = apply(X, MARGIN = 2L, FUN = cumsum), 
+     unit = "ms")
> X <- t(X)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3108308 166.1    5709258 305.0  5709258 305.0
Vcells 5479409  41.9   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumsums = rowCumsums(X), `apply+cumsum` = apply(X, MARGIN = 1L, FUN = cumsum), 
+     unit = "ms")Table: Benchmarking of colCumsums() and apply+cumsum() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 0.017864 | 0.0184425 | 0.0192490 | 0.0190685 | 0.0195705 | 0.032377 | 
| 2 | apply+cumsum | 0.752238 | 0.7930680 | 0.8180328 | 0.8109245 | 0.8310740 | 1.072476 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 1.00000 | 1.0000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 
| 2 | apply+cumsum | 42.10916 | 43.0022 | 42.49742 | 42.52692 | 42.46565 | 33.12463 | 
Table: Benchmarking of rowCumsums() and apply+cumsum() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums | 0.017210 | 0.0177510 | 0.0195783 | 0.0183045 | 0.0188795 | 0.046978 | 
| 2 | apply+cumsum | 0.753124 | 0.7921245 | 0.8118253 | 0.7999565 | 0.8167745 | 1.306501 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 
| 2 | apply+cumsum | 43.76084 | 44.62422 | 41.46561 | 43.70272 | 43.26251 | 27.81091 | 
Figure: Benchmarking of colCumsums() and apply+cumsum() on integer+10x1000 data as well as rowCumsums() and apply+cumsum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCumsums() and rowCumsums() on integer+10x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCumsums() and rowCumsums() on integer+10x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCumsums | 17.210 | 17.7510 | 19.57828 | 18.3045 | 18.8795 | 46.978 | 
| 1 | colCumsums | 17.864 | 18.4425 | 19.24900 | 19.0685 | 19.5705 | 32.377 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCumsums | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 1 | colCumsums | 1.038001 | 1.038956 | 0.9831814 | 1.041738 | 1.036601 | 0.6891949 | 
Figure: Benchmarking of colCumsums() and rowCumsums() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x1000"]]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3108498 166.1    5709258 305.0  5709258 305.0
Vcells 5474848  41.8   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumsums = colCumsums(X), `apply+cumsum` = apply(X, MARGIN = 2L, FUN = cumsum), 
+     unit = "ms")
> X <- t(X)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3108489 166.1    5709258 305.0  5709258 305.0
Vcells 5524886  42.2   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumsums = rowCumsums(X), `apply+cumsum` = apply(X, MARGIN = 1L, FUN = cumsum), 
+     unit = "ms")Table: Benchmarking of colCumsums() and apply+cumsum() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 0.162260 | 0.164089 | 0.1729198 | 0.1711255 | 0.178054 | 0.217846 | 
| 2 | apply+cumsum | 1.507841 | 1.556263 | 1.8620912 | 1.5888660 | 1.645371 | 13.510441 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 1.000000 | 1.000000 | 1.00000 | 1.0000 | 1.000000 | 1.00000 | 
| 2 | apply+cumsum | 9.292746 | 9.484258 | 10.76853 | 9.2848 | 9.240857 | 62.01831 | 
Table: Benchmarking of rowCumsums() and apply+cumsum() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums | 0.163137 | 0.1675025 | 0.181545 | 0.1722575 | 0.177399 | 0.84700 | 
| 2 | apply+cumsum | 1.528956 | 1.5720130 | 1.869777 | 1.5992720 | 1.637102 | 13.08279 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.00000 | 
| 2 | apply+cumsum | 9.372221 | 9.385012 | 10.29925 | 9.284194 | 9.228361 | 15.44604 | 
Figure: Benchmarking of colCumsums() and apply+cumsum() on integer+100x1000 data as well as rowCumsums() and apply+cumsum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCumsums() and rowCumsums() on integer+100x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCumsums() and rowCumsums() on integer+100x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 162.260 | 164.0890 | 172.9198 | 171.1255 | 178.054 | 217.846 | 
| 2 | rowCumsums | 163.137 | 167.5025 | 181.5450 | 172.2575 | 177.399 | 847.000 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.0000000 | 1.000000 | 
| 2 | rowCumsums | 1.005405 | 1.020803 | 1.04988 | 1.006615 | 0.9963213 | 3.888068 | 
Figure: Benchmarking of colCumsums() and rowCumsums() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x100"]]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3108691 166.1    5709258 305.0  5709258 305.0
Vcells 5475407  41.8   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumsums = colCumsums(X), `apply+cumsum` = apply(X, MARGIN = 2L, FUN = cumsum), 
+     unit = "ms")
> X <- t(X)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3108685 166.1    5709258 305.0  5709258 305.0
Vcells 5525450  42.2   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumsums = rowCumsums(X), `apply+cumsum` = apply(X, MARGIN = 1L, FUN = cumsum), 
+     unit = "ms")Table: Benchmarking of colCumsums() and apply+cumsum() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 0.157001 | 0.1590005 | 0.1677189 | 0.164210 | 0.1724045 | 0.201525 | 
| 2 | apply+cumsum | 0.850301 | 0.8738420 | 1.0361679 | 0.896856 | 0.9465080 | 6.867605 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 
| 2 | apply+cumsum | 5.415895 | 5.495844 | 6.178002 | 5.461641 | 5.490042 | 34.07818 | 
Table: Benchmarking of rowCumsums() and apply+cumsum() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums | 0.170063 | 0.1724545 | 0.1847704 | 0.1794145 | 0.1843415 | 0.313704 | 
| 2 | apply+cumsum | 0.884892 | 0.9106820 | 1.1361354 | 0.9311325 | 0.9840030 | 11.234460 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.00000 | 
| 2 | apply+cumsum | 5.203319 | 5.280709 | 6.148905 | 5.18984 | 5.337935 | 35.81229 | 
Figure: Benchmarking of colCumsums() and apply+cumsum() on integer+1000x100 data as well as rowCumsums() and apply+cumsum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCumsums() and rowCumsums() on integer+1000x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCumsums() and rowCumsums() on integer+1000x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 157.001 | 159.0005 | 167.7189 | 164.2100 | 172.4045 | 201.525 | 
| 2 | rowCumsums | 170.063 | 172.4545 | 184.7704 | 179.4145 | 184.3415 | 313.704 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 
| 2 | rowCumsums | 1.083197 | 1.084616 | 1.101667 | 1.092592 | 1.069238 | 1.55665 | 
Figure: Benchmarking of colCumsums() and rowCumsums() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         x <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     dim(x) <- c(nrow, ncol)
+     x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = mode)> X <- data[["10x10"]]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3108899 166.1    5709258 305.0  5709258 305.0
Vcells 5591749  42.7   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumsums = colCumsums(X), `apply+cumsum` = apply(X, MARGIN = 2L, FUN = cumsum), 
+     unit = "ms")
> X <- t(X)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3108884 166.1    5709258 305.0  5709258 305.0
Vcells 5591877  42.7   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumsums = rowCumsums(X), `apply+cumsum` = apply(X, MARGIN = 1L, FUN = cumsum), 
+     unit = "ms")Table: Benchmarking of colCumsums() and apply+cumsum() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 0.000951 | 0.0013245 | 0.0016868 | 0.001563 | 0.0018685 | 0.009846 | 
| 2 | apply+cumsum | 0.025061 | 0.0258960 | 0.0273502 | 0.026181 | 0.0264655 | 0.129141 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 
| 2 | apply+cumsum | 26.35226 | 19.55153 | 16.21408 | 16.75048 | 14.16404 | 13.11609 | 
Table: Benchmarking of rowCumsums() and apply+cumsum() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums | 0.001033 | 0.0014590 | 0.0018279 | 0.001752 | 0.0019580 | 0.012744 | 
| 2 | apply+cumsum | 0.024794 | 0.0256725 | 0.0270697 | 0.025953 | 0.0263155 | 0.120387 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.000000 | 
| 2 | apply+cumsum | 24.00194 | 17.59596 | 14.80912 | 14.81336 | 13.43999 | 9.446563 | 
Figure: Benchmarking of colCumsums() and apply+cumsum() on double+10x10 data as well as rowCumsums() and apply+cumsum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCumsums() and rowCumsums() on double+10x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCumsums() and rowCumsums() on double+10x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 951 | 1324.5 | 1686.82 | 1563 | 1868.5 | 9846 | 
| 2 | rowCumsums | 1033 | 1459.0 | 1827.91 | 1752 | 1958.0 | 12744 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowCumsums | 1.086225 | 1.101548 | 1.083643 | 1.120921 | 1.047899 | 1.294333 | 
Figure: Benchmarking of colCumsums() and rowCumsums() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x100"]]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3109077 166.1    5709258 305.0  5709258 305.0
Vcells 5591859  42.7   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumsums = colCumsums(X), `apply+cumsum` = apply(X, MARGIN = 2L, FUN = cumsum), 
+     unit = "ms")
> X <- t(X)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3109071 166.1    5709258 305.0  5709258 305.0
Vcells 5601902  42.8   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumsums = rowCumsums(X), `apply+cumsum` = apply(X, MARGIN = 1L, FUN = cumsum), 
+     unit = "ms")Table: Benchmarking of colCumsums() and apply+cumsum() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 0.010349 | 0.0109360 | 0.0119258 | 0.0112805 | 0.0117620 | 0.053442 | 
| 2 | apply+cumsum | 0.202861 | 0.2056205 | 0.2133436 | 0.2073775 | 0.2139005 | 0.353507 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.000000 | 
| 2 | apply+cumsum | 19.60199 | 18.80217 | 17.88926 | 18.38372 | 18.18573 | 6.614779 | 
Table: Benchmarking of rowCumsums() and apply+cumsum() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums | 0.008235 | 0.0088715 | 0.0095574 | 0.0093015 | 0.0098925 | 0.016764 | 
| 2 | apply+cumsum | 0.160743 | 0.1649900 | 0.1706646 | 0.1662630 | 0.1678295 | 0.302181 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 
| 2 | apply+cumsum | 19.51949 | 18.59776 | 17.85673 | 17.87486 | 16.96533 | 18.02559 | 
Figure: Benchmarking of colCumsums() and apply+cumsum() on double+100x100 data as well as rowCumsums() and apply+cumsum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCumsums() and rowCumsums() on double+100x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCumsums() and rowCumsums() on double+100x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCumsums | 8.235 | 8.8715 | 9.55744 | 9.3015 | 9.8925 | 16.764 | 
| 1 | colCumsums | 10.349 | 10.9360 | 11.92579 | 11.2805 | 11.7620 | 53.442 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCumsums | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 1 | colCumsums | 1.256709 | 1.232711 | 1.247802 | 1.212761 | 1.188982 | 3.187903 | 
Figure: Benchmarking of colCumsums() and rowCumsums() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x10"]]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3109267 166.1    5709258 305.0  5709258 305.0
Vcells 5592736  42.7   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumsums = colCumsums(X), `apply+cumsum` = apply(X, MARGIN = 2L, FUN = cumsum), 
+     unit = "ms")
> X <- t(X)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3109261 166.1    5709258 305.0  5709258 305.0
Vcells 5602779  42.8   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumsums = rowCumsums(X), `apply+cumsum` = apply(X, MARGIN = 1L, FUN = cumsum), 
+     unit = "ms")Table: Benchmarking of colCumsums() and apply+cumsum() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 0.011687 | 0.0121495 | 0.0129607 | 0.0125775 | 0.0128600 | 0.045127 | 
| 2 | apply+cumsum | 0.140885 | 0.1427040 | 0.1471542 | 0.1444200 | 0.1472245 | 0.239505 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.000000 | 
| 2 | apply+cumsum | 12.05485 | 11.74567 | 11.35386 | 11.48241 | 11.44825 | 5.307355 | 
Table: Benchmarking of rowCumsums() and apply+cumsum() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums | 0.010043 | 0.011007 | 0.0120208 | 0.011606 | 0.0124735 | 0.030249 | 
| 2 | apply+cumsum | 0.099419 | 0.101546 | 0.1067722 | 0.103022 | 0.1076780 | 0.180666 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | apply+cumsum | 9.899333 | 9.225584 | 8.882294 | 8.876615 | 8.632541 | 5.972627 | 
Figure: Benchmarking of colCumsums() and apply+cumsum() on double+1000x10 data as well as rowCumsums() and apply+cumsum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCumsums() and rowCumsums() on double+1000x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCumsums() and rowCumsums() on double+1000x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCumsums | 10.043 | 11.0070 | 12.02079 | 11.6060 | 12.4735 | 30.249 | 
| 1 | colCumsums | 11.687 | 12.1495 | 12.96071 | 12.5775 | 12.8600 | 45.127 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCumsums | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 1 | colCumsums | 1.163696 | 1.103798 | 1.078191 | 1.083707 | 1.030986 | 1.491851 | 
Figure: Benchmarking of colCumsums() and rowCumsums() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["10x1000"]]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3109456 166.1    5709258 305.0  5709258 305.0
Vcells 5593759  42.7   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumsums = colCumsums(X), `apply+cumsum` = apply(X, MARGIN = 2L, FUN = cumsum), 
+     unit = "ms")
> X <- t(X)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3109450 166.1    5709258 305.0  5709258 305.0
Vcells 5603802  42.8   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumsums = rowCumsums(X), `apply+cumsum` = apply(X, MARGIN = 1L, FUN = cumsum), 
+     unit = "ms")Table: Benchmarking of colCumsums() and apply+cumsum() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 0.010178 | 0.011411 | 0.0123421 | 0.0118735 | 0.0123915 | 0.023636 | 
| 2 | apply+cumsum | 0.746431 | 0.789557 | 0.8030532 | 0.7986635 | 0.8121960 | 0.877837 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 
| 2 | apply+cumsum | 73.33769 | 69.19262 | 65.06638 | 67.26437 | 65.54461 | 37.13983 | 
Table: Benchmarking of rowCumsums() and apply+cumsum() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums | 0.009703 | 0.0110745 | 0.0118773 | 0.0114655 | 0.0121805 | 0.019422 | 
| 2 | apply+cumsum | 0.736904 | 0.7909285 | 0.8010720 | 0.7968600 | 0.8128895 | 0.879196 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums | 1.000 | 1.00000 | 1.0000 | 1.00000 | 1.00000 | 1.00000 | 
| 2 | apply+cumsum | 75.946 | 71.41889 | 67.4458 | 69.50068 | 66.73696 | 45.26805 | 
Figure: Benchmarking of colCumsums() and apply+cumsum() on double+10x1000 data as well as rowCumsums() and apply+cumsum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCumsums() and rowCumsums() on double+10x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCumsums() and rowCumsums() on double+10x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCumsums | 9.703 | 11.0745 | 11.87727 | 11.4655 | 12.1805 | 19.422 | 
| 1 | colCumsums | 10.178 | 11.4110 | 12.34206 | 11.8735 | 12.3915 | 23.636 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCumsums | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 
| 1 | colCumsums | 1.048954 | 1.030385 | 1.039133 | 1.035585 | 1.017323 | 1.21697 | 
Figure: Benchmarking of colCumsums() and rowCumsums() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x1000"]]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3109640 166.1    5709258 305.0  5709258 305.0
Vcells 5593882  42.7   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumsums = colCumsums(X), `apply+cumsum` = apply(X, MARGIN = 2L, FUN = cumsum), 
+     unit = "ms")
> X <- t(X)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3109631 166.1    5709258 305.0  5709258 305.0
Vcells 5693920  43.5   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumsums = rowCumsums(X), `apply+cumsum` = apply(X, MARGIN = 1L, FUN = cumsum), 
+     unit = "ms")Table: Benchmarking of colCumsums() and apply+cumsum() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 0.092020 | 0.099466 | 0.108740 | 0.1061305 | 0.1159415 | 0.170128 | 
| 2 | apply+cumsum | 1.846279 | 1.888750 | 2.369293 | 1.9863660 | 2.2874110 | 12.396982 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 1.00000 | 1.0000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 
| 2 | apply+cumsum | 20.06389 | 18.9889 | 21.78861 | 18.71626 | 19.72901 | 72.86856 | 
Table: Benchmarking of rowCumsums() and apply+cumsum() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums | 0.069659 | 0.076171 | 0.1811151 | 0.086158 | 0.0939665 | 9.429972 | 
| 2 | apply+cumsum | 1.440417 | 1.574412 | 1.9984813 | 1.764504 | 1.9370215 | 12.568730 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.000000 | 
| 2 | apply+cumsum | 20.67812 | 20.66944 | 11.03432 | 20.47987 | 20.61396 | 1.332849 | 
Figure: Benchmarking of colCumsums() and apply+cumsum() on double+100x1000 data as well as rowCumsums() and apply+cumsum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCumsums() and rowCumsums() on double+100x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCumsums() and rowCumsums() on double+100x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCumsums | 69.659 | 76.171 | 181.1151 | 86.1580 | 93.9665 | 9429.972 | 
| 1 | colCumsums | 92.020 | 99.466 | 108.7400 | 106.1305 | 115.9415 | 170.128 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCumsums | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.00000 | 1.0000000 | 
| 1 | colCumsums | 1.321007 | 1.305825 | 0.6003916 | 1.231812 | 1.23386 | 0.0180412 | 
Figure: Benchmarking of colCumsums() and rowCumsums() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x100"]]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3109839 166.1    5709258 305.0  5709258 305.0
Vcells 5595102  42.7   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumsums = colCumsums(X), `apply+cumsum` = apply(X, MARGIN = 2L, FUN = cumsum), 
+     unit = "ms")
> X <- t(X)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3109827 166.1    5709258 305.0  5709258 305.0
Vcells 5695135  43.5   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumsums = rowCumsums(X), `apply+cumsum` = apply(X, MARGIN = 1L, FUN = cumsum), 
+     unit = "ms")Table: Benchmarking of colCumsums() and apply+cumsum() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 0.105626 | 0.115681 | 0.1736255 | 0.1246615 | 0.131595 | 5.044977 | 
| 2 | apply+cumsum | 0.821538 | 0.855851 | 1.0302632 | 0.9243780 | 0.997576 | 6.030735 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCumsums | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | apply+cumsum | 7.777801 | 7.398371 | 5.933823 | 7.415104 | 7.580653 | 1.195394 | 
Table: Benchmarking of rowCumsums() and apply+cumsum() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums | 0.074125 | 0.078856 | 0.0868615 | 0.085673 | 0.091320 | 0.129372 | 
| 2 | apply+cumsum | 0.846315 | 0.916516 | 1.1850474 | 1.002492 | 1.060085 | 6.211344 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCumsums | 1.0000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.0000 | 
| 2 | apply+cumsum | 11.4174 | 11.62265 | 13.64296 | 11.70137 | 11.60846 | 48.0115 | 
Figure: Benchmarking of colCumsums() and apply+cumsum() on double+1000x100 data as well as rowCumsums() and apply+cumsum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCumsums() and rowCumsums() on double+1000x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCumsums() and rowCumsums() on double+1000x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCumsums | 74.125 | 78.856 | 86.86148 | 85.6730 | 91.320 | 129.372 | 
| 1 | colCumsums | 105.626 | 115.681 | 173.62553 | 124.6615 | 131.595 | 5044.977 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCumsums | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000 | 
| 1 | colCumsums | 1.424971 | 1.466991 | 1.998878 | 1.455085 | 1.441032 | 38.9959 | 
Figure: Benchmarking of colCumsums() and rowCumsums() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS:   /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
other attached packages:
[1] microbenchmark_1.4-6    matrixStats_0.55.0-9000 ggplot2_3.2.1          
[4] knitr_1.24              R.devices_2.16.0        R.utils_2.9.0          
[7] R.oo_1.22.0             R.methodsS3_1.7.1       history_0.0.0-9002     
loaded via a namespace (and not attached):
 [1] Biobase_2.45.0       bit64_0.9-7          splines_3.6.1       
 [4] network_1.15         assertthat_0.2.1     highr_0.8           
 [7] stats4_3.6.1         blob_1.2.0           robustbase_0.93-5   
[10] pillar_1.4.2         RSQLite_2.1.2        backports_1.1.4     
[13] lattice_0.20-38      glue_1.3.1           digest_0.6.20       
[16] colorspace_1.4-1     sandwich_2.5-1       Matrix_1.2-17       
[19] XML_3.98-1.20        lpSolve_5.6.13.3     pkgconfig_2.0.2     
[22] genefilter_1.66.0    purrr_0.3.2          ergm_3.10.4         
[25] xtable_1.8-4         mvtnorm_1.0-11       scales_1.0.0        
[28] tibble_2.1.3         annotate_1.62.0      IRanges_2.18.2      
[31] TH.data_1.0-10       withr_2.1.2          BiocGenerics_0.30.0 
[34] lazyeval_0.2.2       mime_0.7             survival_2.44-1.1   
[37] magrittr_1.5         crayon_1.3.4         statnet.common_4.3.0
[40] memoise_1.1.0        laeken_0.5.0         R.cache_0.13.0      
[43] MASS_7.3-51.4        R.rsp_0.43.1         tools_3.6.1         
[46] multcomp_1.4-10      S4Vectors_0.22.1     trust_0.1-7         
[49] munsell_0.5.0        AnnotationDbi_1.46.1 compiler_3.6.1      
[52] rlang_0.4.0          grid_3.6.1           RCurl_1.95-4.12     
[55] cwhmisc_6.6          rappdirs_0.3.1       labeling_0.3        
[58] bitops_1.0-6         base64enc_0.1-3      boot_1.3-23         
[61] gtable_0.3.0         codetools_0.2-16     DBI_1.0.0           
[64] markdown_1.1         R6_2.4.0             zoo_1.8-6           
[67] dplyr_0.8.3          bit_1.1-14           zeallot_0.1.0       
[70] parallel_3.6.1       Rcpp_1.0.2           vctrs_0.2.0         
[73] DEoptimR_1.0-8       tidyselect_0.2.5     xfun_0.9            
[76] coda_0.19-3         Total processing time was 23.53 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colCumsums')Copyright Henrik Bengtsson. Last updated on 2019-09-10 20:39:52 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>