colRowCummins_subset - HenrikBengtsson/matrixStats GitHub Wiki
matrixStats: Benchmark report
This report benchmark the performance of colCummins() and rowCummins() on subsetted computation.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         x <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     dim(x) <- c(nrow, ncol)
+     x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = mode)> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3090639 165.1    5709258 305.0  5709258 305.0
Vcells 5672763  43.3   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCummins_X_S = colCummins(X_S), `colCummins(X, rows, cols)` = colCummins(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCummins(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3089802 165.1    5709258 305.0  5709258 305.0
Vcells 5670704  43.3   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCummins_X_S = rowCummins(X_S), `rowCummins(X, cols, rows)` = rowCummins(X, 
+     rows = cols, cols = rows), `rowCummins(X[cols, rows])` = rowCummins(X[cols, rows]), unit = "ms")Table: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCummins_X_S | 0.000915 | 0.0011200 | 0.0020594 | 0.0011585 | 0.0012545 | 0.087488 | 
| 2 | colCummins(X, rows, cols) | 0.001005 | 0.0012505 | 0.0013654 | 0.0013000 | 0.0013705 | 0.003372 | 
| 3 | colCummins(X[rows, cols]) | 0.001464 | 0.0018135 | 0.0019923 | 0.0018775 | 0.0019910 | 0.007840 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCummins_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | colCummins(X, rows, cols) | 1.098361 | 1.116518 | 0.6630216 | 1.122141 | 1.092467 | 0.0385424 | 
| 3 | colCummins(X[rows, cols]) | 1.600000 | 1.619196 | 0.9674272 | 1.620630 | 1.587087 | 0.0896123 | 
Table: Benchmarking of rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCummins_X_S | 0.000892 | 0.0011295 | 0.0012449 | 0.0012010 | 0.0012865 | 0.002965 | 
| 2 | rowCummins(X, cols, rows) | 0.001068 | 0.0013020 | 0.0022825 | 0.0013585 | 0.0014870 | 0.087982 | 
| 3 | rowCummins(X[cols, rows]) | 0.001428 | 0.0018735 | 0.0020410 | 0.0019480 | 0.0020875 | 0.006222 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCummins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowCummins(X, cols, rows) | 1.197309 | 1.152722 | 1.833494 | 1.131141 | 1.155849 | 29.673524 | 
| 3 | rowCummins(X[cols, rows]) | 1.600897 | 1.658699 | 1.639499 | 1.621982 | 1.622620 | 2.098482 | 
Figure: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on integer+10x10 data as well as rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+10x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+10x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCummins_X_S | 915 | 1120.0 | 2059.39 | 1158.5 | 1254.5 | 87488 | 
| 2 | rowCummins_X_S | 892 | 1129.5 | 1244.88 | 1201.0 | 1286.5 | 2965 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCummins_X_S | 1.0000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowCummins_X_S | 0.9748634 | 1.008482 | 0.6044897 | 1.036685 | 1.025508 | 0.0338904 | 
Figure: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3088406 165.0    5709258 305.0  5709258 305.0
Vcells 5339262  40.8   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCummins_X_S = colCummins(X_S), `colCummins(X, rows, cols)` = colCummins(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCummins(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3088400 165.0    5709258 305.0  5709258 305.0
Vcells 5344345  40.8   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCummins_X_S = rowCummins(X_S), `rowCummins(X, cols, rows)` = rowCummins(X, 
+     rows = cols, cols = rows), `rowCummins(X[cols, rows])` = rowCummins(X[cols, rows]), unit = "ms")Table: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCummins_X_S | 0.008817 | 0.0089450 | 0.0091459 | 0.0090645 | 0.0091840 | 0.010996 | 
| 2 | colCummins(X, rows, cols) | 0.008903 | 0.0094100 | 0.0096303 | 0.0095285 | 0.0096700 | 0.014627 | 
| 3 | colCummins(X[rows, cols]) | 0.016285 | 0.0165575 | 0.0176355 | 0.0166755 | 0.0169095 | 0.062493 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCummins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colCummins(X, rows, cols) | 1.009754 | 1.051984 | 1.052970 | 1.051189 | 1.052918 | 1.330211 | 
| 3 | colCummins(X[rows, cols]) | 1.847000 | 1.851034 | 1.928245 | 1.839649 | 1.841191 | 5.683249 | 
Table: Benchmarking of rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCummins_X_S | 0.006658 | 0.006922 | 0.0071410 | 0.0069905 | 0.0071210 | 0.011277 | 
| 2 | rowCummins(X, cols, rows) | 0.009422 | 0.009656 | 0.0098793 | 0.0097885 | 0.0099240 | 0.013185 | 
| 3 | rowCummins(X[cols, rows]) | 0.013913 | 0.014320 | 0.0153660 | 0.0144620 | 0.0147095 | 0.056003 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCummins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowCummins(X, cols, rows) | 1.415140 | 1.394973 | 1.383452 | 1.400257 | 1.393625 | 1.169194 | 
| 3 | rowCummins(X[cols, rows]) | 2.089667 | 2.068766 | 2.151796 | 2.068808 | 2.065651 | 4.966126 | 
Figure: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on integer+100x100 data as well as rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+100x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+100x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCummins_X_S | 6.658 | 6.922 | 7.14102 | 6.9905 | 7.121 | 11.277 | 
| 1 | colCummins_X_S | 8.817 | 8.945 | 9.14588 | 9.0645 | 9.184 | 10.996 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCummins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 1 | colCummins_X_S | 1.324272 | 1.292257 | 1.280753 | 1.296688 | 1.289707 | 0.975082 | 
Figure: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3089161 165.0    5709258 305.0  5709258 305.0
Vcells 5343331  40.8   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCummins_X_S = colCummins(X_S), `colCummins(X, rows, cols)` = colCummins(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCummins(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3089152 165.0    5709258 305.0  5709258 305.0
Vcells 5348409  40.9   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCummins_X_S = rowCummins(X_S), `rowCummins(X, cols, rows)` = rowCummins(X, 
+     rows = cols, cols = rows), `rowCummins(X[cols, rows])` = rowCummins(X[cols, rows]), unit = "ms")Table: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCummins_X_S | 0.009516 | 0.009839 | 0.0144038 | 0.0102400 | 0.0119245 | 0.092255 | 
| 2 | colCummins(X, rows, cols) | 0.009938 | 0.010439 | 0.0140314 | 0.0109305 | 0.0124975 | 0.056128 | 
| 3 | colCummins(X[rows, cols]) | 0.017062 | 0.017640 | 0.0224640 | 0.0183595 | 0.0202485 | 0.083665 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCummins_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | colCummins(X, rows, cols) | 1.044346 | 1.060982 | 0.9741436 | 1.067432 | 1.048052 | 0.6084006 | 
| 3 | colCummins(X[rows, cols]) | 1.792980 | 1.792865 | 1.5595930 | 1.792920 | 1.698059 | 0.9068885 | 
Table: Benchmarking of rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCummins_X_S | 0.007483 | 0.0077385 | 0.0080536 | 0.0078480 | 0.0080045 | 0.023165 | 
| 2 | rowCummins(X, cols, rows) | 0.010802 | 0.0110445 | 0.0114086 | 0.0111635 | 0.0112805 | 0.024163 | 
| 3 | rowCummins(X[cols, rows]) | 0.015721 | 0.0162440 | 0.0165020 | 0.0164440 | 0.0166240 | 0.019230 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCummins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowCummins(X, cols, rows) | 1.443539 | 1.427215 | 1.416593 | 1.422464 | 1.409270 | 1.0430822 | 
| 3 | rowCummins(X[cols, rows]) | 2.100895 | 2.099115 | 2.049028 | 2.095311 | 2.076832 | 0.8301317 | 
Figure: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on integer+1000x10 data as well as rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+1000x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+1000x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCummins_X_S | 7.483 | 7.7385 | 8.05357 | 7.848 | 8.0045 | 23.165 | 
| 1 | colCummins_X_S | 9.516 | 9.8390 | 14.40379 | 10.240 | 11.9245 | 92.255 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCummins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 1 | colCummins_X_S | 1.271683 | 1.271435 | 1.788498 | 1.304791 | 1.489724 | 3.982517 | 
Figure: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3089365 165.0    5709258 305.0  5709258 305.0
Vcells 5344164  40.8   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCummins_X_S = colCummins(X_S), `colCummins(X, rows, cols)` = colCummins(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCummins(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3089359 165.0    5709258 305.0  5709258 305.0
Vcells 5349247  40.9   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCummins_X_S = rowCummins(X_S), `rowCummins(X, cols, rows)` = rowCummins(X, 
+     rows = cols, cols = rows), `rowCummins(X[cols, rows])` = rowCummins(X[cols, rows]), unit = "ms")Table: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCummins_X_S | 0.007207 | 0.0075985 | 0.0078169 | 0.007738 | 0.007888 | 0.010273 | 
| 2 | colCummins(X, rows, cols) | 0.010152 | 0.0104300 | 0.0109617 | 0.010522 | 0.010641 | 0.048803 | 
| 3 | colCummins(X[rows, cols]) | 0.015761 | 0.0162120 | 0.0166486 | 0.016348 | 0.016583 | 0.021429 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCummins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colCummins(X, rows, cols) | 1.408630 | 1.372639 | 1.402308 | 1.359783 | 1.349011 | 4.750608 | 
| 3 | colCummins(X[rows, cols]) | 2.186902 | 2.133579 | 2.129825 | 2.112691 | 2.102307 | 2.085954 | 
Table: Benchmarking of rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCummins_X_S | 0.006360 | 0.0067120 | 0.0070464 | 0.0068140 | 0.0069870 | 0.022598 | 
| 2 | rowCummins(X, cols, rows) | 0.009311 | 0.0096670 | 0.0101872 | 0.0097940 | 0.0099915 | 0.040024 | 
| 3 | rowCummins(X[cols, rows]) | 0.013739 | 0.0140725 | 0.0144666 | 0.0142395 | 0.0143875 | 0.022746 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCummins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowCummins(X, cols, rows) | 1.463994 | 1.440256 | 1.445744 | 1.437335 | 1.430013 | 1.771130 | 
| 3 | rowCummins(X[cols, rows]) | 2.160220 | 2.096618 | 2.053050 | 2.089742 | 2.059181 | 1.006549 | 
Figure: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on integer+10x1000 data as well as rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+10x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+10x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCummins_X_S | 6.360 | 6.7120 | 7.04637 | 6.814 | 6.987 | 22.598 | 
| 1 | colCummins_X_S | 7.207 | 7.5985 | 7.81690 | 7.738 | 7.888 | 10.273 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCummins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 1 | colCummins_X_S | 1.133176 | 1.132077 | 1.109351 | 1.135603 | 1.128954 | 0.4545978 | 
Figure: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3089564 165.1    5709258 305.0  5709258 305.0
Vcells 5366821  41.0   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCummins_X_S = colCummins(X_S), `colCummins(X, rows, cols)` = colCummins(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCummins(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3089558 165.1    5709258 305.0  5709258 305.0
Vcells 5416904  41.4   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCummins_X_S = rowCummins(X_S), `rowCummins(X, cols, rows)` = rowCummins(X, 
+     rows = cols, cols = rows), `rowCummins(X[cols, rows])` = rowCummins(X[cols, rows]), unit = "ms")Table: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCummins_X_S | 0.076467 | 0.0830405 | 0.0854113 | 0.0857135 | 0.0881830 | 0.100931 | 
| 2 | colCummins(X, rows, cols) | 0.078039 | 0.0821825 | 0.0868152 | 0.0869735 | 0.0899560 | 0.159013 | 
| 3 | colCummins(X[rows, cols]) | 0.148192 | 0.1563745 | 0.1632731 | 0.1648780 | 0.1696205 | 0.192752 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCummins_X_S | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colCummins(X, rows, cols) | 1.020558 | 0.9896677 | 1.016437 | 1.014700 | 1.020106 | 1.575462 | 
| 3 | colCummins(X[rows, cols]) | 1.937986 | 1.8831113 | 1.911610 | 1.923594 | 1.923506 | 1.909740 | 
Table: Benchmarking of rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCummins_X_S | 0.053342 | 0.059001 | 0.0611612 | 0.0611045 | 0.0629900 | 0.077378 | 
| 2 | rowCummins(X, cols, rows) | 0.078537 | 0.087337 | 0.0911573 | 0.0915950 | 0.0953395 | 0.110285 | 
| 3 | rowCummins(X[cols, rows]) | 0.113550 | 0.129148 | 0.1328198 | 0.1328050 | 0.1368540 | 0.176294 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCummins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowCummins(X, cols, rows) | 1.472330 | 1.480263 | 1.490444 | 1.498989 | 1.513566 | 1.425276 | 
| 3 | rowCummins(X[cols, rows]) | 2.128717 | 2.188912 | 2.171637 | 2.173408 | 2.172631 | 2.278348 | 
Figure: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on integer+100x1000 data as well as rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+100x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+100x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCummins_X_S | 53.342 | 59.0010 | 61.16116 | 61.1045 | 62.990 | 77.378 | 
| 1 | colCummins_X_S | 76.467 | 83.0405 | 85.41129 | 85.7135 | 88.183 | 100.931 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCummins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 1 | colCummins_X_S | 1.433523 | 1.407442 | 1.396496 | 1.402736 | 1.399952 | 1.304389 | 
Figure: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3089780 165.1    5709258 305.0  5709258 305.0
Vcells 5367600  41.0   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCummins_X_S = colCummins(X_S), `colCummins(X, rows, cols)` = colCummins(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCummins(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3089774 165.1    5709258 305.0  5709258 305.0
Vcells 5417683  41.4   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCummins_X_S = rowCummins(X_S), `rowCummins(X, cols, rows)` = rowCummins(X, 
+     rows = cols, cols = rows), `rowCummins(X[cols, rows])` = rowCummins(X[cols, rows]), unit = "ms")Table: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | colCummins(X, rows, cols) | 0.075888 | 0.0872800 | 0.0907698 | 0.090959 | 0.0939045 | 0.112488 | 
| 1 | colCummins_X_S | 0.079572 | 0.0886955 | 0.0915477 | 0.093005 | 0.0939690 | 0.124616 | 
| 3 | colCummins(X[rows, cols]) | 0.141785 | 0.1566385 | 0.1629022 | 0.164924 | 0.1698225 | 0.226106 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | colCummins(X, rows, cols) | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 1 | colCummins_X_S | 1.048545 | 1.016218 | 1.008570 | 1.022494 | 1.000687 | 1.107816 | 
| 3 | colCummins(X[rows, cols]) | 1.868345 | 1.794667 | 1.794675 | 1.813169 | 1.808460 | 2.010045 | 
Table: Benchmarking of rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCummins_X_S | 0.053851 | 0.0583935 | 0.0606016 | 0.061617 | 0.0634515 | 0.076102 | 
| 2 | rowCummins(X, cols, rows) | 0.082936 | 0.0898645 | 0.0936903 | 0.095209 | 0.0979100 | 0.113070 | 
| 3 | rowCummins(X[cols, rows]) | 0.124949 | 0.1345165 | 0.1403937 | 0.139218 | 0.1464985 | 0.207243 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCummins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowCummins(X, cols, rows) | 1.540101 | 1.538947 | 1.546003 | 1.545174 | 1.543068 | 1.485769 | 
| 3 | rowCummins(X[cols, rows]) | 2.320273 | 2.303621 | 2.316664 | 2.259409 | 2.308826 | 2.723227 | 
Figure: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on integer+1000x100 data as well as rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+1000x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+1000x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCummins_X_S | 53.851 | 58.3935 | 60.60165 | 61.617 | 63.4515 | 76.102 | 
| 1 | colCummins_X_S | 79.572 | 88.6955 | 91.54767 | 93.005 | 93.9690 | 124.616 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCummins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 1 | colCummins_X_S | 1.477633 | 1.518928 | 1.510647 | 1.509405 | 1.480958 | 1.637487 | 
Figure: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         x <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     dim(x) <- c(nrow, ncol)
+     x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = mode)> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3089998 165.1    5709258 305.0  5709258 305.0
Vcells 5458701  41.7   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCummins_X_S = colCummins(X_S), `colCummins(X, rows, cols)` = colCummins(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCummins(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3089983 165.1    5709258 305.0  5709258 305.0
Vcells 5458869  41.7   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCummins_X_S = rowCummins(X_S), `rowCummins(X, cols, rows)` = rowCummins(X, 
+     rows = cols, cols = rows), `rowCummins(X[cols, rows])` = rowCummins(X[cols, rows]), unit = "ms")Table: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCummins_X_S | 0.001000 | 0.0011030 | 0.0013316 | 0.0011535 | 0.0012200 | 0.013730 | 
| 2 | colCummins(X, rows, cols) | 0.001066 | 0.0012855 | 0.0014034 | 0.0013530 | 0.0014130 | 0.003784 | 
| 3 | colCummins(X[rows, cols]) | 0.001783 | 0.0018970 | 0.0020751 | 0.0019650 | 0.0020755 | 0.006815 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCummins_X_S | 1.000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | colCummins(X, rows, cols) | 1.066 | 1.165458 | 1.053920 | 1.172952 | 1.158197 | 0.2756009 | 
| 3 | colCummins(X[rows, cols]) | 1.783 | 1.719855 | 1.558351 | 1.703511 | 1.701229 | 0.4963583 | 
Table: Benchmarking of rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCummins_X_S | 0.000966 | 0.0011765 | 0.0013011 | 0.0012325 | 0.0013325 | 0.003136 | 
| 2 | rowCummins(X, cols, rows) | 0.001125 | 0.0013525 | 0.0017580 | 0.0014185 | 0.0015595 | 0.031579 | 
| 3 | rowCummins(X[cols, rows]) | 0.001450 | 0.0018975 | 0.0020451 | 0.0019860 | 0.0020825 | 0.005927 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCummins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowCummins(X, cols, rows) | 1.164596 | 1.149596 | 1.351182 | 1.150913 | 1.170357 | 10.069834 | 
| 3 | rowCummins(X[cols, rows]) | 1.501035 | 1.612835 | 1.571821 | 1.611359 | 1.562852 | 1.889987 | 
Figure: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on double+10x10 data as well as rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+10x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+10x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCummins_X_S | 1000 | 1103.0 | 1331.60 | 1153.5 | 1220.0 | 13730 | 
| 2 | rowCummins_X_S | 966 | 1176.5 | 1301.09 | 1232.5 | 1332.5 | 3136 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCummins_X_S | 1.000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowCummins_X_S | 0.966 | 1.066636 | 0.9770877 | 1.068487 | 1.092213 | 0.228405 | 
Figure: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3090200 165.1    5709258 305.0  5709258 305.0
Vcells 5464651  41.7   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCummins_X_S = colCummins(X_S), `colCummins(X, rows, cols)` = colCummins(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCummins(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3090194 165.1    5709258 305.0  5709258 305.0
Vcells 5474734  41.8   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCummins_X_S = rowCummins(X_S), `rowCummins(X, cols, rows)` = rowCummins(X, 
+     rows = cols, cols = rows), `rowCummins(X[cols, rows])` = rowCummins(X[cols, rows]), unit = "ms")Table: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCummins_X_S | 0.010794 | 0.0115485 | 0.0117035 | 0.0117080 | 0.0118150 | 0.013680 | 
| 2 | colCummins(X, rows, cols) | 0.011887 | 0.0121600 | 0.0129274 | 0.0123665 | 0.0125200 | 0.044043 | 
| 3 | colCummins(X[rows, cols]) | 0.026945 | 0.0272420 | 0.0282785 | 0.0274560 | 0.0276965 | 0.069881 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCummins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colCummins(X, rows, cols) | 1.101260 | 1.052951 | 1.104575 | 1.056244 | 1.059670 | 3.219517 | 
| 3 | colCummins(X[rows, cols]) | 2.496294 | 2.358921 | 2.416242 | 2.345063 | 2.344181 | 5.108260 | 
Table: Benchmarking of rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCummins_X_S | 0.006163 | 0.0065905 | 0.0070962 | 0.0070745 | 0.0073915 | 0.011508 | 
| 2 | rowCummins(X, cols, rows) | 0.008060 | 0.0088115 | 0.0092377 | 0.0090880 | 0.0093710 | 0.015023 | 
| 3 | rowCummins(X[cols, rows]) | 0.013431 | 0.0141430 | 0.0155416 | 0.0148875 | 0.0153165 | 0.055384 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCummins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowCummins(X, cols, rows) | 1.307805 | 1.337000 | 1.301787 | 1.284614 | 1.267808 | 1.305440 | 
| 3 | rowCummins(X[cols, rows]) | 2.179296 | 2.145968 | 2.190137 | 2.104389 | 2.072178 | 4.812652 | 
Figure: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on double+100x100 data as well as rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+100x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+100x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCummins_X_S | 6.163 | 6.5905 | 7.0962 | 7.0745 | 7.3915 | 11.508 | 
| 1 | colCummins_X_S | 10.794 | 11.5485 | 11.7035 | 11.7080 | 11.8150 | 13.680 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCummins_X_S | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 1 | colCummins_X_S | 1.75142 | 1.752295 | 1.649263 | 1.654958 | 1.598458 | 1.188738 | 
Figure: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3090409 165.1    5709258 305.0  5709258 305.0
Vcells 5466061  41.8   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCummins_X_S = colCummins(X_S), `colCummins(X, rows, cols)` = colCummins(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCummins(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3090403 165.1    5709258 305.0  5709258 305.0
Vcells 5476144  41.8   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCummins_X_S = rowCummins(X_S), `rowCummins(X, cols, rows)` = rowCummins(X, 
+     rows = cols, cols = rows), `rowCummins(X[cols, rows])` = rowCummins(X[cols, rows]), unit = "ms")Table: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | colCummins(X, rows, cols) | 0.009985 | 0.010337 | 0.0110026 | 0.0105045 | 0.010664 | 0.050924 | 
| 1 | colCummins_X_S | 0.012504 | 0.012787 | 0.0129902 | 0.0128800 | 0.013055 | 0.015821 | 
| 3 | colCummins(X[rows, cols]) | 0.028160 | 0.028511 | 0.0293906 | 0.0286435 | 0.028841 | 0.060066 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | colCummins(X, rows, cols) | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 1 | colCummins_X_S | 1.252278 | 1.237013 | 1.180650 | 1.226141 | 1.224212 | 0.3106787 | 
| 3 | colCummins(X[rows, cols]) | 2.820230 | 2.758150 | 2.671245 | 2.726784 | 2.704520 | 1.1795224 | 
Table: Benchmarking of rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCummins_X_S | 0.006328 | 0.0070205 | 0.0077093 | 0.0072965 | 0.007725 | 0.038172 | 
| 2 | rowCummins(X, cols, rows) | 0.010371 | 0.0110405 | 0.0117670 | 0.0112185 | 0.011381 | 0.041706 | 
| 3 | rowCummins(X[cols, rows]) | 0.015277 | 0.0161325 | 0.0169096 | 0.0167285 | 0.017206 | 0.022217 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCummins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowCummins(X, cols, rows) | 1.638906 | 1.572609 | 1.526340 | 1.537518 | 1.473269 | 1.0925809 | 
| 3 | rowCummins(X[cols, rows]) | 2.414191 | 2.297913 | 2.193406 | 2.292675 | 2.227314 | 0.5820235 | 
Figure: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on double+1000x10 data as well as rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+1000x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+1000x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCummins_X_S | 6.328 | 7.0205 | 7.70927 | 7.2965 | 7.725 | 38.172 | 
| 1 | colCummins_X_S | 12.504 | 12.7870 | 12.99022 | 12.8800 | 13.055 | 15.821 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCummins_X_S | 1.00000 | 1.00000 | 1.000000 | 1.00000 | 1.000000 | 1.0000000 | 
| 1 | colCummins_X_S | 1.97598 | 1.82138 | 1.685013 | 1.76523 | 1.689968 | 0.4144661 | 
Figure: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3090617 165.1    5709258 305.0  5709258 305.0
Vcells 5466214  41.8   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCummins_X_S = colCummins(X_S), `colCummins(X, rows, cols)` = colCummins(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCummins(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3090611 165.1    5709258 305.0  5709258 305.0
Vcells 5476297  41.8   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCummins_X_S = rowCummins(X_S), `rowCummins(X, cols, rows)` = rowCummins(X, 
+     rows = cols, cols = rows), `rowCummins(X[cols, rows])` = rowCummins(X[cols, rows]), unit = "ms")Table: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCummins_X_S | 0.006549 | 0.0069285 | 0.0077187 | 0.0071435 | 0.007417 | 0.039536 | 
| 3 | colCummins(X[rows, cols]) | 0.015572 | 0.0160515 | 0.0173967 | 0.0163745 | 0.016966 | 0.040929 | 
| 2 | colCummins(X, rows, cols) | 0.019225 | 0.0206570 | 0.0220200 | 0.0210320 | 0.021633 | 0.060253 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCummins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 3 | colCummins(X[rows, cols]) | 2.377768 | 2.316735 | 2.253848 | 2.292224 | 2.287448 | 1.035234 | 
| 2 | colCummins(X, rows, cols) | 2.935563 | 2.981453 | 2.852822 | 2.944215 | 2.916678 | 1.524003 | 
Table: Benchmarking of rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCummins_X_S | 0.005511 | 0.0062450 | 0.0081672 | 0.0072000 | 0.0078260 | 0.035589 | 
| 2 | rowCummins(X, cols, rows) | 0.008481 | 0.0089305 | 0.0110507 | 0.0093655 | 0.0098825 | 0.038541 | 
| 3 | rowCummins(X[cols, rows]) | 0.013547 | 0.0141680 | 0.0178240 | 0.0151260 | 0.0164585 | 0.077312 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCummins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowCummins(X, cols, rows) | 1.538922 | 1.430024 | 1.353054 | 1.300764 | 1.262778 | 1.082947 | 
| 3 | rowCummins(X[cols, rows]) | 2.458175 | 2.268695 | 2.182383 | 2.100833 | 2.103054 | 2.172357 | 
Figure: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on double+10x1000 data as well as rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+10x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+10x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCummins_X_S | 6.549 | 6.9285 | 7.71868 | 7.1435 | 7.417 | 39.536 | 
| 2 | rowCummins_X_S | 5.511 | 6.2450 | 8.16724 | 7.2000 | 7.826 | 35.589 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCummins_X_S | 1.0000000 | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowCummins_X_S | 0.8415025 | 0.9013495 | 1.058114 | 1.007909 | 1.055144 | 0.9001669 | 
Figure: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3090816 165.1    5709258 305.0  5709258 305.0
Vcells 5511653  42.1   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCummins_X_S = colCummins(X_S), `colCummins(X, rows, cols)` = colCummins(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCummins(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3090810 165.1    5709258 305.0  5709258 305.0
Vcells 5611736  42.9   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCummins_X_S = rowCummins(X_S), `rowCummins(X, cols, rows)` = rowCummins(X, 
+     rows = cols, cols = rows), `rowCummins(X[cols, rows])` = rowCummins(X[cols, rows]), unit = "ms")Table: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCummins_X_S | 0.103606 | 0.1067355 | 0.1181058 | 0.1123055 | 0.1151725 | 0.233231 | 
| 2 | colCummins(X, rows, cols) | 0.116474 | 0.1203700 | 0.1657188 | 0.1261345 | 0.1297305 | 3.841325 | 
| 3 | colCummins(X[rows, cols]) | 0.250403 | 0.2578555 | 0.2767217 | 0.2711595 | 0.2787135 | 0.505991 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colCummins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colCummins(X, rows, cols) | 1.124201 | 1.127741 | 1.403138 | 1.123137 | 1.126402 | 16.470045 | 
| 3 | colCummins(X[rows, cols]) | 2.416877 | 2.415836 | 2.342999 | 2.414481 | 2.419966 | 2.169484 | 
Table: Benchmarking of rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCummins_X_S | 0.043556 | 0.0461445 | 0.0491090 | 0.0478995 | 0.0493110 | 0.103283 | 
| 2 | rowCummins(X, cols, rows) | 0.069261 | 0.0718465 | 0.0771819 | 0.0753845 | 0.0775475 | 0.140702 | 
| 3 | rowCummins(X[cols, rows]) | 0.115165 | 0.1203045 | 0.1656451 | 0.1251505 | 0.1321620 | 3.890879 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCummins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowCummins(X, cols, rows) | 1.590160 | 1.556990 | 1.571644 | 1.573806 | 1.572621 | 1.362296 | 
| 3 | rowCummins(X[cols, rows]) | 2.644067 | 2.607125 | 3.373008 | 2.612773 | 2.680173 | 37.672018 | 
Figure: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on double+100x1000 data as well as rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+100x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+100x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCummins_X_S | 43.556 | 46.1445 | 49.10901 | 47.8995 | 49.3110 | 103.283 | 
| 1 | colCummins_X_S | 103.606 | 106.7355 | 118.10581 | 112.3055 | 115.1725 | 233.231 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCummins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 1 | colCummins_X_S | 2.378685 | 2.313071 | 2.404972 | 2.344607 | 2.335635 | 2.258174 | 
Figure: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3091032 165.1    5709258 305.0  5709258 305.0
Vcells 5511800  42.1   22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCummins_X_S = colCummins(X_S), `colCummins(X, rows, cols)` = colCummins(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCummins(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3091026 165.1    5709258 305.0  5709258 305.0
Vcells 5611883  42.9   22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCummins_X_S = rowCummins(X_S), `rowCummins(X, cols, rows)` = rowCummins(X, 
+     rows = cols, cols = rows), `rowCummins(X[cols, rows])` = rowCummins(X[cols, rows]), unit = "ms")Table: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | colCummins(X, rows, cols) | 0.085969 | 0.087311 | 0.0944244 | 0.0902540 | 0.0927465 | 0.180366 | 
| 1 | colCummins_X_S | 0.115069 | 0.115867 | 0.1604314 | 0.1187300 | 0.1252880 | 3.831997 | 
| 3 | colCummins(X[rows, cols]) | 0.182433 | 0.184391 | 0.1987310 | 0.1919055 | 0.2052675 | 0.393272 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | colCummins(X, rows, cols) | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 1 | colCummins_X_S | 1.338494 | 1.327061 | 1.699047 | 1.315510 | 1.350865 | 21.245673 | 
| 3 | colCummins(X[rows, cols]) | 2.122079 | 2.111887 | 2.104659 | 2.126282 | 2.213210 | 2.180411 | 
Table: Benchmarking of rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCummins_X_S | 0.050629 | 0.0531730 | 0.0553793 | 0.0543600 | 0.0553780 | 0.077377 | 
| 2 | rowCummins(X, cols, rows) | 0.074757 | 0.0767525 | 0.1178996 | 0.0797375 | 0.0814075 | 3.911088 | 
| 3 | rowCummins(X[cols, rows]) | 0.125052 | 0.1288805 | 0.1354009 | 0.1328720 | 0.1363755 | 0.263710 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowCummins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowCummins(X, cols, rows) | 1.476565 | 1.443449 | 2.128946 | 1.466841 | 1.470033 | 50.545873 | 
| 3 | rowCummins(X[cols, rows]) | 2.469968 | 2.423796 | 2.444971 | 2.444297 | 2.462630 | 3.408119 | 
Figure: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on double+1000x100 data as well as rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+1000x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+1000x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCummins_X_S | 50.629 | 53.173 | 55.37933 | 54.36 | 55.378 | 77.377 | 
| 1 | colCummins_X_S | 115.069 | 115.867 | 160.43144 | 118.73 | 125.288 | 3831.997 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowCummins_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 
| 1 | colCummins_X_S | 2.272788 | 2.179057 | 2.896955 | 2.184143 | 2.262415 | 49.52372 | 
Figure: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS:   /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
other attached packages:
[1] microbenchmark_1.4-6    matrixStats_0.55.0-9000 ggplot2_3.2.1          
[4] knitr_1.24              R.devices_2.16.0        R.utils_2.9.0          
[7] R.oo_1.22.0             R.methodsS3_1.7.1       history_0.0.0-9002     
loaded via a namespace (and not attached):
 [1] Biobase_2.45.0       bit64_0.9-7          splines_3.6.1       
 [4] network_1.15         assertthat_0.2.1     highr_0.8           
 [7] stats4_3.6.1         blob_1.2.0           robustbase_0.93-5   
[10] pillar_1.4.2         RSQLite_2.1.2        backports_1.1.4     
[13] lattice_0.20-38      glue_1.3.1           digest_0.6.20       
[16] colorspace_1.4-1     sandwich_2.5-1       Matrix_1.2-17       
[19] XML_3.98-1.20        lpSolve_5.6.13.3     pkgconfig_2.0.2     
[22] genefilter_1.66.0    purrr_0.3.2          ergm_3.10.4         
[25] xtable_1.8-4         mvtnorm_1.0-11       scales_1.0.0        
[28] tibble_2.1.3         annotate_1.62.0      IRanges_2.18.2      
[31] TH.data_1.0-10       withr_2.1.2          BiocGenerics_0.30.0 
[34] lazyeval_0.2.2       mime_0.7             survival_2.44-1.1   
[37] magrittr_1.5         crayon_1.3.4         statnet.common_4.3.0
[40] memoise_1.1.0        laeken_0.5.0         R.cache_0.13.0      
[43] MASS_7.3-51.4        R.rsp_0.43.1         tools_3.6.1         
[46] multcomp_1.4-10      S4Vectors_0.22.1     trust_0.1-7         
[49] munsell_0.5.0        AnnotationDbi_1.46.1 compiler_3.6.1      
[52] rlang_0.4.0          grid_3.6.1           RCurl_1.95-4.12     
[55] cwhmisc_6.6          rappdirs_0.3.1       labeling_0.3        
[58] bitops_1.0-6         base64enc_0.1-3      boot_1.3-23         
[61] gtable_0.3.0         codetools_0.2-16     DBI_1.0.0           
[64] markdown_1.1         R6_2.4.0             zoo_1.8-6           
[67] dplyr_0.8.3          bit_1.1-14           zeallot_0.1.0       
[70] parallel_3.6.1       Rcpp_1.0.2           vctrs_0.2.0         
[73] DEoptimR_1.0-8       tidyselect_0.2.5     xfun_0.9            
[76] coda_0.19-3         Total processing time was 22.77 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colRowCummins_subset')Copyright Dongcan Jiang. Last updated on 2019-09-10 20:37:49 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>