binCounts - HenrikBengtsson/matrixStats GitHub Wiki
matrixStats: Benchmark report
This report benchmark the performance of binCounts() against alternative methods.
- hist()
as below
> hist <- graphics::hist
> binCounts_hist <- function(x, bx, right = FALSE, ...) {
+     hist(x, breaks = bx, right = right, include.lowest = TRUE, plot = FALSE)$counts
+ }> set.seed(48879)
> nx <- 1e+05
> xmax <- 0.01 * nx
> x <- runif(nx, min = 0, max = xmax)
> storage.mode(x) <- mode
> str(x)
 int [1:100000] 722 285 591 3 349 509 216 91 150 383 ...
> nb <- 10000
> bx <- seq(from = 0, to = xmax, length.out = nb + 1L)
> bx <- c(-1, bx, xmax + 1)> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3054193 163.2    5709258 305.0  5709258 305.0
Vcells 5150348  39.3   22221311 169.6 56666022 432.4
> stats <- microbenchmark(binCounts = binCounts(x, bx = bx), hist = binCounts_hist(x, bx = bx), unit = "ms")Table: Benchmarking of binCounts() and hist() on integer+unsorted data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | binCounts | 4.906438 | 4.981776 | 5.203014 | 5.038877 | 5.086733 | 9.428698 | 
| 2 | hist | 8.540419 | 8.707266 | 8.860796 | 8.834853 | 8.920008 | 13.046789 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | binCounts | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | hist | 1.740656 | 1.747824 | 1.703012 | 1.753338 | 1.753583 | 1.383732 | 
Figure: Benchmarking of binCounts() and hist() on integer+unsorted data. Outliers are displayed as crosses. Times are in milliseconds.

> x <- sort(x)> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3053148 163.1    5709258 305.0  5709258 305.0
Vcells 5006313  38.2   22221311 169.6 56666022 432.4
> stats <- microbenchmark(binCounts = binCounts(x, bx = bx), hist = binCounts_hist(x, bx = bx), unit = "ms")Table: Benchmarking of binCounts() and hist() on integer+sorted data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | binCounts | 0.746109 | 0.787845 | 0.8582377 | 0.8051165 | 0.8251675 | 4.630643 | 
| 2 | hist | 3.649455 | 3.757657 | 6.1436541 | 3.8502230 | 3.9923265 | 217.726446 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | binCounts | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 
| 2 | hist | 4.891316 | 4.769538 | 7.158453 | 4.782194 | 4.838201 | 47.01862 | 
Figure: Benchmarking of binCounts() and hist() on integer+sorted data. Outliers are displayed as crosses. Times are in milliseconds.

> set.seed(48879)
> nx <- 1e+05
> xmax <- 0.01 * nx
> x <- runif(nx, min = 0, max = xmax)
> storage.mode(x) <- mode
> str(x)
 num [1:100000] 722.11 285.54 591.33 3.42 349.14 ...
> nb <- 10000
> bx <- seq(from = 0, to = xmax, length.out = nb + 1L)
> bx <- c(-1, bx, xmax + 1)> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3053211 163.1    5709258 305.0  5709258 305.0
Vcells 5056355  38.6   22221311 169.6 56666022 432.4
> stats <- microbenchmark(binCounts = binCounts(x, bx = bx), hist = binCounts_hist(x, bx = bx), unit = "ms")Table: Benchmarking of binCounts() and hist() on double+unsorted data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | binCounts | 7.074370 | 7.339281 | 7.665371 | 7.397135 | 7.530170 | 12.55017 | 
| 2 | hist | 8.758879 | 9.131600 | 9.299926 | 9.230472 | 9.331357 | 14.05749 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | binCounts | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | hist | 1.238114 | 1.244209 | 1.213239 | 1.247844 | 1.239196 | 1.120103 | 
Figure: Benchmarking of binCounts() and hist() on double+unsorted data. Outliers are displayed as crosses. Times are in milliseconds.

> x <- sort(x)> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3053277 163.1    5709258 305.0  5709258 305.0
Vcells 5056911  38.6   22267496 169.9 56666022 432.4
> stats <- microbenchmark(binCounts = binCounts(x, bx = bx), hist = binCounts_hist(x, bx = bx), unit = "ms")Table: Benchmarking of binCounts() and hist() on double+sorted data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | binCounts | 0.627017 | 1.858442 | 2.001282 | 1.899146 | 1.933372 | 5.737497 | 
| 2 | hist | 4.172153 | 4.382178 | 4.590442 | 4.465838 | 4.560886 | 8.298852 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | binCounts | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | hist | 6.653971 | 2.357984 | 2.29375 | 2.351498 | 2.359031 | 1.446424 | 
Figure: Benchmarking of binCounts() and hist() on double+sorted data. Outliers are displayed as crosses. Times are in milliseconds.

R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS:   /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
other attached packages:
[1] microbenchmark_1.4-6    matrixStats_0.55.0-9000 ggplot2_3.2.1          
[4] knitr_1.24              R.devices_2.16.0        R.utils_2.9.0          
[7] R.oo_1.22.0             R.methodsS3_1.7.1       history_0.0.0-9002     
loaded via a namespace (and not attached):
 [1] Biobase_2.45.0       bit64_0.9-7          splines_3.6.1       
 [4] network_1.15         assertthat_0.2.1     highr_0.8           
 [7] stats4_3.6.1         blob_1.2.0           robustbase_0.93-5   
[10] pillar_1.4.2         RSQLite_2.1.2        backports_1.1.4     
[13] lattice_0.20-38      glue_1.3.1           digest_0.6.20       
[16] colorspace_1.4-1     sandwich_2.5-1       Matrix_1.2-17       
[19] XML_3.98-1.20        lpSolve_5.6.13.3     pkgconfig_2.0.2     
[22] genefilter_1.66.0    purrr_0.3.2          ergm_3.10.4         
[25] xtable_1.8-4         mvtnorm_1.0-11       scales_1.0.0        
[28] tibble_2.1.3         annotate_1.62.0      IRanges_2.18.2      
[31] TH.data_1.0-10       withr_2.1.2          BiocGenerics_0.30.0 
[34] lazyeval_0.2.2       mime_0.7             survival_2.44-1.1   
[37] magrittr_1.5         crayon_1.3.4         statnet.common_4.3.0
[40] memoise_1.1.0        laeken_0.5.0         R.cache_0.13.0      
[43] MASS_7.3-51.4        R.rsp_0.43.1         tools_3.6.1         
[46] multcomp_1.4-10      S4Vectors_0.22.1     trust_0.1-7         
[49] munsell_0.5.0        AnnotationDbi_1.46.1 compiler_3.6.1      
[52] rlang_0.4.0          grid_3.6.1           RCurl_1.95-4.12     
[55] cwhmisc_6.6          rappdirs_0.3.1       labeling_0.3        
[58] bitops_1.0-6         base64enc_0.1-3      boot_1.3-23         
[61] gtable_0.3.0         codetools_0.2-16     DBI_1.0.0           
[64] markdown_1.1         R6_2.4.0             zoo_1.8-6           
[67] dplyr_0.8.3          bit_1.1-14           zeallot_0.1.0       
[70] parallel_3.6.1       Rcpp_1.0.2           vctrs_0.2.0         
[73] DEoptimR_1.0-8       tidyselect_0.2.5     xfun_0.9            
[76] coda_0.19-3         Total processing time was 7.73 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('binCounts')Copyright Henrik Bengtsson. Last updated on 2019-09-10 20:34:10 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>