08 02 Customizing Seaborn Plots - HannaAA17/Data-Scientist-With-Python-datacamp GitHub Wiki
Using Seaborn Styles
Setting styles
- Seaborn has default configuration that can be applied with
sns.set()
- These styles can override matplot and pandas plots as well
- Theme:
sns.set_style(style)
, style=['white', 'dark', 'whitegrid', 'darkgrid', 'ticks']
Removing axes with despine()
sns.despine()
: by default, right and top spines are removed.
Colors in Seaborn
Defining a color for a plot
- Seaborn supports assigning colors to plots using
matplotlib
color codes:
sns.set(color_codes=True)
sns.distplot(df[col], color='g')
Palettes
set_palette()
function to define a palette.
sns.palplot()
function displays a palette.
sns.color_palette()
returns the current palette.
Defining Custom palettes.
- Circular colors = when the data is not ordered
-
sns.palplot(sns.color_palette('Paired', 12))
各种不同颜色
- Sequential colors = when the data has a consistent range from high to low
sns.palplot(sns.color_palette('Blues', 12))
由浅到深的蓝色
- Diverging colors = when both the low and high values are interesting
sns.palplot(sns.color_palette('BrBG',12))
两种不同的颜色 深-浅-深
Customizing with matplotlib
Using matplotlib axes
# Create a figure and axes
fig, ax = plt.subplots()
# Plot the distribution of data
sns.distplot(df['fmr_3'], ax=ax)
# Create a more descriptive x axis label
ax.set(xlabel="3 Bedroom Fair Market Rent")
# Show the plot
plt.show()
Additional Customizations
xlabel
, ylabel
, xlim
, title
ax.axvline(x=1000, label='')
: 垂直于x轴的线
linestyle
, linewidth