08 01 Seaborn Introduction - HannaAA17/Data-Scientist-With-Python-datacamp GitHub Wiki
Introduction to Seaborn
Distplot
- Similar to the histogram
- By default, generates a Gaussian Kernel Density Estimation (KDE)
sns.distplot(df['col_name'])
- Automatic label on x axis
- Muted color palette
- KDE plot
- Narrow bins
Using the distribution plot
- Disable the KDE and specify the number of bins to use to plot a simple histogram
sns.distplot(df['alcohol'], kde=False, bins=10)
- Alternative data distribution: rug plot
sns.distplot(df['alcohol'], hist=False, rug=True)
- The
displot
function uses several functions including kedplot
and rugplot
- It is possible to further customized a plot by passing argument to the underlying function
sns.distplot(df['alcohol'], hist=False, rug=True, kde_kws={'shade':True})
Regression Plot in Seaborn
- The
regplot
function generates a scatter plot with a regression line.
data
, x
, y
variables must be defined.
sns.regplot(x='alcohol', y='pH', data=df)
Implot() builds on top of the base regplot()
Implot()
faceting: hue
, col
etc.