Vector‐Valued Multivariable Functions - Giri-Subrahmanya/temp GitHub Wiki
VECTOR-VALUED MULTIVARIABLE FUNCTIONS
A function $f:D \rightarrow ℝ^m$ is a vector valued multivariable function iff $D \subseteq ℝ^n$, where $n>1$ and $m>1$.
- At least 2 parameters as input
- The output is an element of $ℝ^m$, where $m>1$
Some linear transformations are also vector-valued multivariable functions. Examples:
- $T(x,y,z)=(x+y,y-z,z-x+y)$
- $T(x,y)=(y,x)$
Other examples:
- $f(x,y,z)=(e^x,e^y,\ln(z))$
- $f(x,y)=(x^2+\cos(y),\frac{xy}{x^2+y^2})$