Limits for Scalar Valued Multivariable Functions - Giri-Subrahmanya/temp GitHub Wiki
We saw that there are two ways to approach a point
- From its left
- From its right
Let us focus the number of ways the number of ways to approach a point
Along how many ways can we approach
Along |
Along |
Along |
Along |
Along |
---|---|---|---|---|
We could come up with more curves.
If the domain of a scalar valued multivariable function is
As an extension of the informal description of limit of functions of one variable, the following could be a heuristic about limit of a scalar valued multivariable function.
The limit of a scalar valued multivariable function exists at a point
Let us look at this closely by observing the value of the following functions at $(1,1)
$f(x,y)=x^2+y^2$ $g(x,y)=\frac{xy}{(x^2-1)(y-1)}$
Along every curve, we can approach
Along |
Along |
Along |
Along |
Along |
---|---|---|---|---|
-
PATH-1 -
$x<1$ -
PATH-2 -
$x>1$
The first column is the value
0.991 | 0.991 | 1.964162 | 1.009 | 2.000162 | 1.000081 | 1.982243007 | 0.9910403788 | 1.964242032 | 0.9909592553 | 1.964081246 | |||||
0.992 | 0.992 | 1.968128 | 1.008 | 2.000128 | 1.000064 | 1.984192004 | 0.9920319148 | 1.96819132 | 0.9919678283 | 1.968064172 | |||||
0.993 | 0.993 | 1.972098 | 1.007 | 2.000098 | 1.000049 | 1.986147002 | 0.9930244429 | 1.972146544 | 0.9929753851 | 1.972049115 | |||||
0.994 | 0.994 | 1.976072 | 1.006 | 2.000072 | 1.000036 | 1.988108001 | 0.9940179641 | 1.976107713 | 0.9939819277 | 1.976036073 | |||||
0.995 | 0.995 | 1.98005 | 1.005 | 2.00005 | 1.000025 | 1.990075001 | 0.9950124792 | 1.980074834 | 0.9949874582 | 1.980025042 | |||||
0.996 | 0.996 | 1.984032 | 1.004 | 2.000032 | 1.000016 | 1.992048 | 0.9960079893 | 1.984047915 | 0.9959919786 | 1.984016021 | |||||
0.997 | 0.997 | 1.988018 | 1.003 | 2.000018 | 1.000009 | 1.994027 | 0.9970044955 | 1.988026964 | 0.996995491 | 1.988009009 | |||||
0.998 | 0.998 | 1.992008 | 1.002 | 2.000008 | 1.000004 | 1.996012 | 0.9980019987 | 1.992011989 | 0.9979979973 | 1.992004003 | |||||
0.999 | 0.999 | 1.996002 | 1.001 | 2.000002 | 1.000001 | 1.998003 | 0.9990004998 | 1.996002999 | 0.9989994997 | 1.996001 |
The first column is the value
1.009 | 1.009 | 2.036162 | 0.991 | 2.000162 | 1.000081 | 2.018243007 | 1.009040622 | 2.036243976 | 1.008959741 | 2.03608076 | |||||
1.008 | 1.008 | 2.032128 | 0.992 | 2.000128 | 1.000064 | 2.016192004 | 1.008032086 | 2.032192685 | 1.00796817 | 2.032063831 | |||||
1.007 | 1.007 | 2.028098 | 0.993 | 2.000098 | 1.000049 | 2.014147002 | 1.007024557 | 2.028147459 | 1.006975614 | 2.028048887 | |||||
1.006 | 1.006 | 2.024072 | 0.994 | 2.000072 | 1.000036 | 2.012108001 | 1.006018036 | 2.024108289 | 1.005982072 | 2.024035929 | |||||
1.005 | 1.005 | 2.02005 | 0.995 | 2.00005 | 1.000025 | 2.010075001 | 1.005012521 | 2.020075167 | 1.004987542 | 2.020024959 | |||||
1.004 | 1.004 | 2.016032 | 0.996 | 2.000032 | 1.000016 | 2.008048 | 1.004008011 | 2.016048086 | 1.003992021 | 2.016015979 | |||||
1.003 | 1.003 | 2.012018 | 0.997 | 2.000018 | 1.000009 | 2.006027 | 1.003004505 | 2.012027036 | 1.002995509 | 2.012008991 | |||||
1.002 | 1.002 | 2.008008 | 0.998 | 2.000008 | 1.000004 | 2.004012 | 1.002002001 | 2.008012011 | 1.001998003 | 2.008003997 | |||||
1.001 | 1.001 | 2.004002 | 0.999 | 2.000002 | 1.000001 | 2.002003 | 1.0010005 | 2.004003001 | 1.0009995 | 2.004001 |
Notice that
The first column is the value
0.991 | 0.991 | 6089.631738 | 1.009 | -6200.240589 | 1.000081 | -682825.9892 | 0.9910403788 | 6117.325429 | 0.9909592553 | 6061.937859 | |||||
0.992 | 0.992 | 7718.875502 | 1.008 | -7843.373494 | 1.000064 | -972702.8112 | 0.9920319148 | 7750.041499 | 0.9919678283 | 7687.709338 | |||||
0.993 | 0.993 | 10097.06421 | 1.007 | -10239.4196 | 1.000049 | -1452677.165 | 0.9930244429 | 10132.69458 | 0.9929753851 | 10061.4337 | |||||
0.994 | 0.994 | 13764.01427 | 1.006 | -13930.17943 | 1.000036 | -2307932.557 | 0.9940179641 | 13805.5971 | 0.9939819277 | 13722.43131 | |||||
0.995 | 0.995 | 19850.12531 | 1.005 | -20049.62406 | 1.000025 | -3990074.687 | 0.9950124792 | 19900.04156 | 0.9949874582 | 19800.20896 | |||||
0.996 | 0.996 | 31062.62525 | 1.004 | -31312.12425 | 1.000016 | -7796968.437 | 0.9960079893 | 31125.04158 | 0.9959919786 | 31000.20883 | |||||
0.997 | 0.997 | 55305.68074 | 1.003 | -55638.51333 | 1.000009 | -18490865.43 | 0.9970044955 | 55388.93049 | 0.996995491 | 55222.43093 | |||||
0.998 | 0.998 | 124625.1251 | 1.002 | -125124.6246 | 1.000004 | -62437687.19 | 0.9980019987 | 124750.0416 | 0.9979979973 | 124500.2086 | |||||
0.999 | 0.999 | 499250.1251 | 1.001 | -500249.6248 | 1.000001 | -499750374.7 | 0.9990004998 | 499500.0416 | 0.9989994997 | 499000.2085 |
The first column is the value
1.009 | 1.009 | 6256.29728 | 0.991 | -6144.688408 | 1.000081 | 688999.4538 | 1.009040622 | 6228.436915 | 1.008959741 | 6284.157831 | |||||
1.008 | 1.008 | 7906.374502 | 0.992 | -7780.876494 | 1.000064 | 980515.9363 | 1.008032086 | 7875.041833 | 1.00796817 | 7937.707338 | |||||
1.007 | 1.007 | 10311.34905 | 0.993 | -10167.99365 | 1.000049 | 1462881.871 | 1.007024557 | 10275.55202 | 1.006975614 | 10347.14624 | |||||
1.006 | 1.006 | 14014.01352 | 0.994 | -13846.84834 | 1.000036 | 2321822.071 | 1.006018036 | 13972.26401 | 1.005982072 | 14055.76314 | |||||
1.005 | 1.005 | 20150.12469 | 0.995 | -19949.62594 | 1.000025 | 4010075.312 | 1.005012521 | 20100.04177 | 1.004987542 | 20200.20771 | |||||
1.004 | 1.004 | 31437.62475 | 0.996 | -31187.12575 | 1.000016 | 7828219.062 | 1.004008011 | 31375.04175 | 1.003992021 | 31500.20783 | |||||
1.003 | 1.003 | 55805.68037 | 0.997 | -55471.84778 | 1.000009 | 18546421.61 | 1.003004505 | 55722.26395 | 1.002995509 | 55889.09685 | |||||
1.002 | 1.002 | 125375.1249 | 0.998 | -124874.6254 | 1.000004 | 62562687.81 | 1.002002001 | 125250.0417 | 1.001998003 | 125500.2081 | |||||
1.001 | 1.001 | 500750.1249 | 0.999 | -499749.6252 | 1.000001 | 500250375.4 | 1.0010005 | 500500.0417 | 1.0009995 | 501000.2082 |
- From PATH-1, along all the five curves, the function's value is approaching
$2$ as$(x,y)$ approaches$(1,1)$ . - From PATH-2, along all the five curves, the function's value is approaching
$2$ as$(x,y)$ approaches$(1,1)$ . - These observations seems to suggest that the limit of
$f(x,y)$ as$(x,y)\rightarrow (1,1)$ exists and is equal to$2$ . - However, these observations are not enough to say that the limit of
$f(x,y)$ as$(x,y)\rightarrow (1,1)$ exists. - We would have to check the same for every curve passing through
$(1,1)$ to arrive at a conclusion. We could come up with as many curves as we want. Therefore, this is not a good approach. However, this provides an idea of the concept of limits for multivariable functions.
- From both the paths, along all the five curves, the function's value is not approaching any particular value.
- A small change in
$(x,y)$ is changing the value of the function drastically. - From PATH-1, along
$y=x^2-2x+2$ , for example,$g(0.998,1.000004)=-62437687.19$ and$g(0.999,1.000001)=-499750374.7$ . This clearly shows the drastic change. A similar observation can be made for the function's value along other curves. - Along
$y=x^2-2x+2$ , as$(x,y)$ approaches$(1,1)$ from PATH-1, the function's value is approaching$\infty$ , whereas, as$(x,y)$ approaches$(1,1)$ along PATH-2, the function's value is approaching$-\infty$ . - These observations are enough to say that the limit of
$g(x,y)$ as$(x,y)\rightarrow (1,1)$ does not exist. Later, we shall see a formal way to arrive at this conclusion.
As mentioned in the introductory section, the aim of these notes is to provide intuition about Multivariable Calculus. Refer to the lecture slides for the definition of limit. The above explanations were hopefully clear enough to understand the concept of limit.
However, we shall look at the some rules which has to be followed for finding the limit of a function.
-
If
$\lim\limits_{x \rightarrow a} f(x)=F$ ,$\lim\limits_{x\rightarrow a} g(x)=G$ and$c\in â$ , then$\lim\limits_{x\rightarrow a} (xf+g)(x)=xF+G$ . -
If
$\lim\limits_{x \rightarrow a} f(x)=F$ ,$\lim\limits_{x\rightarrow a} g(x)=G$ , then$\lim\limits_{x\rightarrow a} (fg)(x)=FG$ . -
If
$\lim\limits_{x \rightarrow a} f(x)=F$ ,$\lim\limits_{x\rightarrow a} g(x)=G\ne 0$ , then the function$\frac{f}{g}$ is defined in at least a small interval around$a$ and$\lim\limits_{x\rightarrow a} \frac{f}{g}(x)=\frac{F}{G}$ . -
Composition
$:$ Suppose$f$ is a scalar-valued multivariable function and g is a function of one variable such that the composition$g\circ f$ is well-defined. If$\lim\limits_{x\rightarrow a} f(x)=F$ ,$\lim\limits_{x->F} g(x)=L$ , then$(g\circ f)(x)=L$ . -
The Sandwich Principle
$:$ If$\lim\limits_{x\rightarrow a} f(x)=L$ ,$\lim\limits_{x\rightarrow a}g(x)=L$ , and$h(x)$ is a function such that$f(x)âĪh(x)âĪg(x)$ , then$\lim\limits_{x\rightarrow a}h(x)=L$