Functions of One Variable - Giri-Subrahmanya/temp GitHub Wiki

FUNCTIONS OF ONE VARIABLE

A function $\displaystyle f:D\rightarrow ℝ$ is a function of one variable iff $D\subseteq ℝ$.

FUNCTIONS EXAMPLES
Linear Functions $f(x)=3x-4,\ f(x)=9-4x$
Polynomial Functions $f(x)=7x^4+x^2-3x+1$
Rational Functions $f(x)=\frac{x^{2} -x^{3} +1}{3x+4}$
Trigonometric Functions $\displaystyle f( x) =\sin( x) ,\ f( x) =\cos( x) ,\ f( x) =\tan( x)$
Exponential Functions $\displaystyle f( x) =e^{x},\ f(x)=3^x$
Logarithm Functions $\displaystyle f( x) =\log_{10}(x),\ f(x)=log_4(x)$

We could also have an arithmetic combination or composition of the above functions

$$f(x)=\sin(x^2-1)+\ln\Biggl(\frac{9x}{\sqrt{x^3+5-1}}\Biggr)$$

PLOTTING GRAPHS

  • $x$ - $axis$ : Domain
  • $y$ - $axis$ : Codomain

Let us look at the graphs of a few functions.

$f(x)=\frac{3x^2+5}{9-x}$

image

$f(x)=e^x$ and $f(x)=\ln(x)$

image
⚠️ **GitHub.com Fallback** ⚠️