PQSBH - Galactic-Code-Developers/NovaNet GitHub Wiki
Post-Quantum Secure Block Hashing (PQSBH)
Introduction
The Post-Quantum Secure Block Hashing (PQSBH) mechanism is an advanced cryptographic hashing system designed to safeguard NovaNet’s Hybrid Quantum-Blockchain Infrastructure from quantum-based attacks.
By integrating lattice-based cryptography, hash-based signatures, and quantum-resistant algorithms, PQSBH ensures that block headers, transaction hashes, and consensus verification remain secure even against quantum adversaries.
How PQSBH Works
Post-Quantum Cryptographic Hashing
- Lattice-Based Hashing (LHash) – Ensures that hash computations remain secure against Shor’s Algorithm attacks.
- Hash-Based Signatures (XMSS & SPHINCS+) – Provides quantum-resistant cryptographic proofs for block integrity.
- Quantum Randomness for Nonce Generation – Uses Quantum Entangled Randomness (QER) to generate unpredictable nonce values for blocks.
Mathematical Model for PQSBH:
$$H_{PQ} = H_{Lattice} \Big( B_{header} \oplus T_{root} \oplus R_{QER} \Big)$$
Where:
- $$H_{PQ}$$ = Post-Quantum Secure Block Hash
- $$H_{Lattice}$$ = Lattice-based cryptographic hash function
- $$B_{header}$$ = Block header data (timestamp, previous hash, Merkle root, etc.)
- $$T_{root}$$ = Transaction Merkle root hash
- $$R_{QER}$$ = Quantum Entangled Randomness for nonce generation
- $$\oplus$$ = Quantum-Secure XOR Operation for enhanced entropy
This hashing model ensures that even large-scale quantum computers cannot feasibly reverse-engineer NovaNet’s block hashes.
AI-Assisted Block Hash Integrity Checks
To enhance security and prevent hash collisions, PQSBH integrates AI-assisted integrity verification:
- AI Pattern Analysis – Detects anomalies in block hashes that may indicate tampering.
- Quantum-Protected Collision Resistance – Ensures that each block hash is unique and resistant to quantum duplication attacks.
- Dynamic Hash Function Adjustments – AI monitors cryptographic advancements and dynamically updates hash functions as needed.
Quantum-Resistant Merkle Root Validation
PQSBH reinforces Merkle Tree integrity using Quantum-Resistant Hashing (QRH):
- Enhanced Merkle Proofs with PQCP (Post-Quantum Cryptographic Protection)
- Zero-Knowledge Proof Verification (PQ-ZKPs) for cross-block authentication
- Multi-Level Hashing to prevent Merkle Tree pre-image attacks
$$M_{PQ} = H_{Lattice} \Big( T_{1} \oplus T_{2} \oplus ... \oplus T_{n} \Big)$$
Where:
- $$M_{PQ}$$ = Post-Quantum Secure Merkle Root
- $$H_{Lattice}$$ = Lattice-based cryptographic hash function
- $$T_{1}, T_{2}, ... T_{n}$$) = Transaction hashes inside the Merkle tree
Security Benefits of PQSBH
- Quantum-Resistant Block Hashing – Ensures that block hashes remain secure beyond classical cryptography.
- Post-Quantum Collision Resistance – Prevents hash collisions due to quantum-powered brute-force attacks.
- AI-Assisted Fraud Detection – Uses AI to flag suspicious block hashes or unauthorized modifications.
- Merkle Tree Protection – Protects transaction authenticity even in quantum threat scenarios.
- Future-Proof Cryptographic Adaptability – Supports dynamic updates to post-quantum hashing mechanisms.
Integration with NovaNet
PQSBH is embedded in multiple NovaNet smart contracts:
- NovaNetConsensus.sol – Secures consensus hashing against quantum threats.
- NovaNetValidator.sol – Protects validator-generated block hashes.
- NovaNetOracle.sol – Ensures secure hash verification for external data sources.
- AIAuditLogger.sol – Logs all block hash verifications for post-quantum auditing.
Future Enhancements
- Quantum-Protected Hash Chains (QPHC) for Interoperable Blockchains
- Post-Quantum zk-SNARKs for Efficient Proof-of-Integrity
- Adaptive Hashing via AI-Governed Cryptographic Adjustments
- Hybrid Quantum-Classical Hashing for Quantum-Assisted Ledger Validation