Manufactured Solution Q4 dynamic - GCMLab/GCMLab-FEM GitHub Wiki

Manufactured solution

This test calculates the response for a plane stress manufacture solution in which the displacements in the $x$ and $y$ directions are

$$ u(x, y, t) = - \cfrac{1}{1000} \sin{\left( \cfrac{1}{2} \pi x \right) } \sin{\left(\cfrac{1}{2}\pi y\right)} \sin{\left( 2\pi t\right)} $$

$$ v(x, y, t) = \cfrac{1}{1000} \cos{\left( \cfrac{1}{2} \pi x \right) } \cos{\left(\cfrac{1}{2}\pi y\right)} \cos{\left( 2\pi t\right)} $$

By substituting $u(x, y, t)$ and $v(x, y, t)$ into the governing equations

$$ \nabla \cdot \boldsymbol{\sigma} + \textbf{b} = \rho \ddot{\textbf{u}}, $$

where

$$ \boldsymbol{\sigma} = \textbf{D} \boldsymbol{\varepsilon}, $$

so that the body forces of the system are obtained as:

$$ b_x(x, y, t) = \frac{\pi^2}{8000(\nu^2 - 1)} \sin\left(\frac{1}{2} \pi x\right) \sin\left(\frac{1}{2} \pi y\right) \left[\left(32\rho(\nu^2 - 1) + E(3 - \nu ) \right) \sin(2\pi t) + E\left(\nu + 1 \right) \cos(2\pi t)\right] $$

$$ b_y(x, y, t) = \frac{\pi^2}{8000(\nu^2 - 1)} \cos\left(\frac{1}{2} \pi x\right) \cos\left(\frac{1}{2} \pi y\right) \left[\left(32\rho( 1 -\nu^2 ) + E( \nu - 3 ) \right) \cos(2\pi t) - E\left( \nu + 1 \right) \sin(2\pi t)\right] $$

Geometry and Mesh

The domain is a $1 \times 1 ~\text{m}^2$ square. The element type is Q4. Three uniform meshes where used:

Mesh 1: 2x2

Mesh 2: 10x10

Mesh 3: 20x20

Material Properties

Parameter Symbol Value
Young's Modulus $E$ $200~GPa$
Poisson's Ratio $\nu$ $0.3$
Density $\rho$ $2400$ $kg/m^3$

Plane stress conditions applied.

Simulation Properties

Parameter Value
Start Time ($t_{0}$) $0~s$
End Time ($t_{end}$) $3.123~s$
Number of time steps 100
$\alpha $ $-\cfrac{1}{3}$

Boundary and Initial Conditions

The boundary conditions are fixed at their manufactured solution values on all boundaries (top, bottom, left, and right edges).

The initial conditions are prescribed as zero at all but the external nodes where the boundary conditions are set according to the manufacture solution.

Results for Mesh 3

Magnitude of displacements

/Verification/images/mesh_3_displacement.gif

Displacements on $x$

/Verification/images/mesh_3_displacement_X.gif

Displacements on $y$

/Verification/images/mesh_3_displacement_Y.gif

Warped system (factor = 100)

/Verification/images/mesh_3_distorted.gif

Displacements across the domain along the line $y = 0.51~m$

/Verification/images/mesh_3_line.gif

Comparison of results for different meshes

/Verification/images/X.jpeg /Verification/images/Y.jpeg