Quantum Entanglement Prediction Derivation from SD&N and Vibrational Fields - FatherTimeSDKP/FatherTimeSDKP-SD-N-EOS-QCC GitHub Wiki
Mathematical Formalism and Physical Observables of the SD&N Entanglement Model
⸻
1.1 Hilbert Space of Vibrational Modes • Definition: Let \mathcal{H} be a separable Hilbert space over \mathbb{C}, spanned by an orthonormal basis {|v_n\rangle}{n=1}^N where each |v_n\rangle corresponds to a quantized vibrational eigenmode associated with the SD&N parameter N. • Orthonormality: \langle v_m | v_n \rangle = \delta{mn} • Completeness: \sum_{n=1}^N |v_n\rangle \langle v_n| = \hat{I}_{\mathcal{H}}
⸻
1.2 Vibrational State Vectors • The vibrational state of an entity with SD&N vector \mathbf{I}_{SDN} = (S,D,N) is a normalized vector:
|\psi(\mathbf{I}{SDN})\rangle = \sum{n=1}^N c_n |v_n\rangle, \quad \text{with} \quad \sum_{n=1}^N |c_n|^2 = 1 • The complex coefficients c_n = A_n e^{i \phi_n} encode the amplitude A_n and phase \phi_n, reflecting the vibrational field parameters from \Phi_n(\theta).
⸻
1.3 Entanglement Operator \hat{E}{6 \leftrightarrow 7} • Defined on the two-dimensional subspace \mathcal{H}{6,7} = \text{span}{|v_6\rangle, |v_7\rangle}, this operator acts as:
\hat{E}_{6 \leftrightarrow 7} = |v_6\rangle \langle v_7| + |v_7\rangle \langle v_6| • Hermiticity:
\hat{E}{6 \leftrightarrow 7}^\dagger = \hat{E}{6 \leftrightarrow 7}
since
(|v_6\rangle \langle v_7|)^\dagger = |v_7\rangle \langle v_6| • Eigenvalues and Spectrum:
Within \mathcal{H}{6,7}, \hat{E}{6 \leftrightarrow 7} is represented by the matrix:
\hat{E}_{6 \leftrightarrow 7} = \begin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}
which has eigenvalues \pm 1 with eigenvectors:
|\pm\rangle = \frac{1}{\sqrt{2}}(|v_6\rangle \pm |v_7\rangle) • Physical Interpretation: The operator acts like a Pauli-X (bit-flip) gate exchanging vibrational modes 6 and 7, generating superposition states.
⸻
1.4 Extension to Full Hilbert Space • Extend \hat{E}{6 \leftrightarrow 7} to act as identity on the complement of \mathcal{H}{6,7}:
\hat{E}{6 \leftrightarrow 7} = \hat{I}{\mathcal{H} \setminus \mathcal{H}_{6,7}} \oplus \begin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}
This ensures the operator is unitary and Hermitian on \mathcal{H}.
⸻
2.1 Physical Observables and Measurement • Entanglement Measure:
For two particles/entities A and B with vibrational states |\psi^A\rangle and |\psi^B\rangle, define the entanglement amplitude:
\mathcal{A}{6 \leftrightarrow 7}(A,B) = \langle \psi^A | \hat{E}{6 \leftrightarrow 7} | \psi^B \rangle = c_6^{A*} c_7^{B} + c_7^{A*} c_6^{B} • Observable Quantity: The experimentally accessible quantity is the entanglement strength:
\mathcal{E}{SDN}(A,B) = |\mathcal{A}{6 \leftrightarrow 7}(A,B)|^2
This corresponds to correlation measurements between vibrational modes 6 and 7 of two entities. • Mapping to Measurement Outcomes:
In quantum optics or spin systems, such overlaps translate to coincidence detection rates or spin correlation functions measured in entanglement experiments.
⸻
2.2 Time Evolution of Vibrational States • Assume a Hamiltonian \hat{H} governing the vibrational modes with eigenvalues E_n:
\hat{H} |v_n\rangle = E_n |v_n\rangle • The time evolution operator is:
\hat{U}(t) = e^{-i \hat{H} t / \hbar} • Vibrational states evolve as:
|\psi(t)\rangle = \hat{U}(t) |\psi(0)\rangle = \sum_{n=1}^N c_n e^{-i E_n t / \hbar} |v_n\rangle • The entanglement amplitude becomes time-dependent:
\mathcal{A}{6 \leftrightarrow 7}(A,B;t) = c_6^{A*} c_7^{B} e^{i (E_6^A - E_7^B) t / \hbar} + c_7^{A*} c_6^{B} e^{i (E_7^A - E_6^B) t / \hbar} • This captures dynamical entanglement oscillations measurable via time-resolved experiments. Aspect Formalization Hilbert space $begin:math:text$\mathcal{H} = \text{span}{ Vibrational state $begin:math:text$ Entanglement operator \hat{E}{6 \leftrightarrow 7} Hermitian, swaps modes 6 and 7 Entanglement measure $begin:math:text$\mathcal{E}_{SDN} = Physical observables Correlation functions, coincidence counts Time evolution Governed by \hat{H}, leads to oscillatory entanglement 3. Bell Inequality Formalism for the “6↔7” Vibrational Subspace
⸻
3.1 Setting the Stage: Two-Particle Vibrational System • Consider two entities, A and B, each with vibrational mode subspace \mathcal{H}_{6,7} spanned by {|v_6\rangle, |v_7\rangle}. • The combined system lives in the tensor product space:
\mathcal{H}{AB} = \mathcal{H}{6,7}^A \otimes \mathcal{H}_{6,7}^B
which is isomorphic to a two-qubit Hilbert space.
⸻
3.2 Defining Observables as Pauli Operators • For each subsystem, define Pauli operators acting on the vibrational modes:
\hat{\sigma}_x = |v_6\rangle \langle v_7| + |v_7\rangle \langle v_6| \quad,\quad \hat{\sigma}_z = |v_6\rangle \langle v_6| - |v_7\rangle \langle v_7|
and similarly \hat{\sigma}_y.
⸻
3.3 CHSH Bell Operator • The standard Clauser-Horne-Shimony-Holt (CHSH) operator acting on \mathcal{H}_{AB} is:
\hat{B} = \hat{A}_1 \otimes \hat{B}_1 + \hat{A}_1 \otimes \hat{B}_2 + \hat{A}_2 \otimes \hat{B}_1 - \hat{A}_2 \otimes \hat{B}_2
where \hat{A}{1,2} and \hat{B}{1,2} are observables (Pauli operators with different measurement settings) on A and B respectively.
⸻
3.4 Measurement Settings • Choose measurement directions on the Bloch sphere:
\hat{A}_j = \vec{a}_j \cdot \vec{\sigma} \quad,\quad \hat{B}_k = \vec{b}_k \cdot \vec{\sigma}
with \vec{a}_j, \vec{b}_k \in \mathbb{R}^3 unit vectors and \vec{\sigma} = (\hat{\sigma}_x, \hat{\sigma}_y, \hat{\sigma}_z). • For instance, select:
\vec{a}_1 = (0,0,1), \quad \vec{a}_2 = (1,0,0), \quad \vec{b}_1 = \frac{1}{\sqrt{2}}(1,0,1), \quad \vec{b}_2 = \frac{1}{\sqrt{2}}(-1,0,1)
⸻
3.5 Calculating the Expectation Value • For a two-particle vibrational state \rho (density matrix), the Bell parameter is:
S = \text{Tr}(\rho \hat{B}) • Classical Bound: |S| \leq 2 • Quantum Maximum: |S| \leq 2\sqrt{2}
Violation of this inequality signals quantum entanglement.
⸻
3.6 Application to Your Model • Construct the density matrix from vibrational state amplitudes c_6, c_7 for both particles:
\rho = |\psi_{AB}\rangle \langle \psi_{AB}|
where
|\psi_{AB}\rangle = \sum_{i,j \in {6,7}} c_i^A c_j^B |v_i^A\rangle \otimes |v_j^B\rangle • Compute S using the measurement operators as above. • Compare predicted values to classical and quantum bounds to validate entanglement strength.
⸻
3.7 Summary Step Description Define \mathcal{H}{AB} Two-qubit vibrational mode subspace Operators Pauli operators \hat{\sigma}{x,y,z} on modes 6 and 7 Bell Operator CHSH operator \hat{B} with measurement settings Compute S Expectation \text{Tr}(\rho \hat{B}) Interpretation Violation of $begin:math:text$ Explicit Formula for CHSH Bell Parameter S
⸻
Step 1: Vibrational State Vectors
For two particles A and B, their vibrational states in the two-mode subspace {|v_6\rangle, |v_7\rangle} are:
|\psi^A\rangle = c_6^A |v_6\rangle + c_7^A |v_7\rangle, \quad |\psi^B\rangle = c_6^B |v_6\rangle + c_7^B |v_7\rangle
with normalization:
|c_6^X|^2 + |c_7^X|^2 = 1, \quad X = A, B
⸻
Step 2: Construct the Joint State |\psi_{AB}\rangle
Assuming separability (or to begin with):
|\psi_{AB}\rangle = |\psi^A\rangle \otimes |\psi^B\rangle = \sum_{i,j \in {6,7}} c_i^A c_j^B |v_i^A\rangle \otimes |v_j^B\rangle
If you want to consider entangled states beyond product states, we can extend this, but this is a starting point.
⸻
Step 3: Define Pauli Operators
Express Pauli matrices acting on the two-level vibrational mode subspace:
\hat{\sigma}_x = |v_6\rangle \langle v_7| + |v_7\rangle \langle v_6|, \quad \hat{\sigma}_y = -i |v_6\rangle \langle v_7| + i |v_7\rangle \langle v_6|, \quad \hat{\sigma}_z = |v_6\rangle \langle v_6| - |v_7\rangle \langle v_7|
⸻
Step 4: Measurement Operators
Choose measurement directions \vec{a}_1, \vec{a}_2 for particle A, and \vec{b}_1, \vec{b}_2 for particle B, where:
\hat{A}_j = \vec{a}j \cdot \vec{\sigma} = a{jx} \hat{\sigma}x + a{jy} \hat{\sigma}y + a{jz} \hat{\sigma}_z
and similarly for \hat{B}_k.
⸻
Step 5: Compute the Density Matrix \rho
\rho = |\psi_{AB}\rangle \langle \psi_{AB}|
This is a 4 \times 4 matrix in the basis {|v_6^A v_6^B\rangle, |v_6^A v_7^B\rangle, |v_7^A v_6^B\rangle, |v_7^A v_7^B\rangle}.
Explicitly:
\rho = \begin{pmatrix} |c_6^A c_6^B|^2 & c_6^A c_6^B (c_6^A c_7^B)^* & c_6^A c_6^B (c_7^A c_6^B)^* & c_6^A c_6^B (c_7^A c_7^B)^* \ c_6^A c_7^B (c_6^A c_6^B)^* & |c_6^A c_7^B|^2 & c_6^A c_7^B (c_7^A c_6^B)^* & c_6^A c_7^B (c_7^A c_7^B)^* \ c_7^A c_6^B (c_6^A c_6^B)^* & c_7^A c_6^B (c_6^A c_7^B)^* & |c_7^A c_6^B|^2 & c_7^A c_6^B (c_7^A c_7^B)^* \ c_7^A c_7^B (c_6^A c_6^B)^* & c_7^A c_7^B (c_6^A c_7^B)^* & c_7^A c_7^B (c_7^A c_6^B)^* & |c_7^A c_7^B|^2 \end{pmatrix}
⸻
Step 6: Define the CHSH Bell Operator
\hat{B} = \hat{A}_1 \otimes \hat{B}_1 + \hat{A}_1 \otimes \hat{B}_2 + \hat{A}_2 \otimes \hat{B}_1 - \hat{A}_2 \otimes \hat{B}_2
where each \hat{A}_j, \hat{B}_k is a 2 \times 2 matrix from Step 4.
⸻
Step 7: Compute Bell Parameter S
S = \mathrm{Tr}(\rho \hat{B})
which expands to:
S = \sum_{m,n} \rho_{mn} (\hat{B})_{nm}
with matrix indices m,n=1..4.
⸻
Summary Formula:
\boxed{ S = \mathrm{Tr} \left[ \big( |\psi^A\rangle \langle \psi^A| \otimes |\psi^B\rangle \langle \psi^B| \big) \left( \hat{A}_1 \otimes \hat{B}_1 + \hat{A}_1 \otimes \hat{B}_2 + \hat{A}_2 \otimes \hat{B}_1 - \hat{A}_2 \otimes \hat{B}_2 \right) \right] }
where |\psi^A\rangle, |\psi^B\rangle, \hat{A}_j, and \hat{B}_k are explicitly constructed from your SD&N vibrational coefficients c_6^X, c_7^X and measurement settings \vec{a}_j, \vec{b}_k. import numpy as np
def pauli_matrices(): """Return Pauli matrices as 2x2 numpy arrays.""" sx = np.array([[0, 1], [1, 0]], dtype=complex) sy = np.array([[0, -1j], [1j, 0]], dtype=complex) sz = np.array([[1, 0], [0, -1]], dtype=complex) return sx, sy, sz
def measurement_operator(a_vec): """ Construct measurement operator A = a_x * sx + a_y * sy + a_z * sz a_vec: 3-element array/list representing measurement direction (unit vector) """ sx, sy, sz = pauli_matrices() return a_vec[0]*sx + a_vec[1]*sy + a_vec[2]*sz
def state_vector(c6, c7): """ Normalize and return vibrational state vector |psi> = c6|v6> + c7|v7> """ norm = np.sqrt(abs(c6)**2 + abs(c7)**2) return np.array([c6, c7], dtype=complex) / norm
def density_matrix(psi_A, psi_B): """ Compute the density matrix rho = |psi_A><psi_A| tensor |psi_B><psi_B| psi_A, psi_B: 2-element numpy arrays Returns 4x4 density matrix """ rho_A = np.outer(psi_A, psi_A.conj()) rho_B = np.outer(psi_B, psi_B.conj()) return np.kron(rho_A, rho_B)
def chsh_bell_parameter(c6_A, c7_A, c6_B, c7_B, a1, a2, b1, b2): """ Compute CHSH Bell parameter S for given vibrational amplitudes and measurement vectors. c6_A, c7_A, c6_B, c7_B: complex amplitudes for modes 6 and 7 of particles A and B a1, a2, b1, b2: measurement direction vectors (each length 3, unit vectors) """ # Build state vectors psi_A = state_vector(c6_A, c7_A) psi_B = state_vector(c6_B, c7_B)
# Density matrix for joint system
rho = density_matrix(psi_A, psi_B)
# Measurement operators
A1 = measurement_operator(a1)
A2 = measurement_operator(a2)
B1 = measurement_operator(b1)
B2 = measurement_operator(b2)
# CHSH operator
CHSH = np.kron(A1, B1) + np.kron(A1, B2) + np.kron(A2, B1) - np.kron(A2, B2)
# Compute expectation value S = Tr(rho * CHSH)
S = np.trace(rho @ CHSH).real
return S
Example usage:
Vibrational mode amplitudes (can be complex)
c6_A, c7_A = 1/np.sqrt(2), 1/np.sqrt(2) c6_B, c7_B = 1/np.sqrt(2), -1/np.sqrt(2)
Measurement settings (unit vectors)
a1 = np.array([0, 0, 1]) a2 = np.array([1, 0, 0]) b1 = np.array([1/np.sqrt(2), 0, 1/np.sqrt(2)]) b2 = np.array([-1/np.sqrt(2), 0, import numpy as np import matplotlib.pyplot as plt from scipy.optimize import minimize
def pauli_matrices(): sx = np.array([[0, 1], [1, 0]], dtype=complex) sy = np.array([[0, -1j], [1j, 0]], dtype=complex) sz = np.array([[1, 0], [0, -1]], dtype=complex) return sx, sy, sz
def measurement_operator(a_vec): sx, sy, sz = pauli_matrices() return a_vec[0]*sx + a_vec[1]*sy + a_vec[2]*sz
def normalize_state(c6, c7): norm = np.sqrt(abs(c6)**2 + abs(c7)**2) if norm == 0: return np.array([1, 0], dtype=complex) return np.array([c6, c7], dtype=complex) / norm
def pure_state_density_matrix(psi_A, psi_B): rho_A = np.outer(psi_A, psi_A.conj()) rho_B = np.outer(psi_B, psi_B.conj()) return np.kron(rho_A, rho_B)
def chsh_bell_parameter_density(rho, a1, a2, b1, b2): A1 = measurement_operator(a1) A2 = measurement_operator(a2) B1 = measurement_operator(b1) B2 = measurement_operator(b2) CHSH = np.kron(A1, B1) + np.kron(A1, B2) + np.kron(A2, B1) - np.kron(A2, B2) S = np.trace(rho @ CHSH).real return S
def chsh_bell_parameter(c6_A, c7_A, c6_B, c7_B, a1, a2, b1, b2): psi_A = normalize_state(c6_A, c7_A) psi_B = normalize_state(c6_B, c7_B) rho = pure_state_density_matrix(psi_A, psi_B) return chsh_bell_parameter_density(rho, a1, a2, b1, b2)
=== Plotting S over measurement angles ===
def bloch_vector(theta, phi): """Convert spherical angles to a 3D unit vector.""" return np.array([ np.sin(theta) * np.cos(phi), np.sin(theta) * np.sin(phi), np.cos(theta) ])
def plot_bell_vs_angle(c6_A, c7_A, c6_B, c7_B, fixed_a1=True): thetas = np.linspace(0, np.pi, 100) S_values = []
# Fix measurement settings for A and B except one that varies with theta
# For simplicity, fix a1 and a2 and vary b1 in the x-z plane
a1 = np.array([0,0,1])
a2 = np.array([1,0,0])
b2 = np.array([-1/np.sqrt(2),0,1/np.sqrt(2)])
for theta in thetas:
b1 = bloch_vector(theta, 0) # Vary only theta in x-z plane
S = chsh_bell_parameter(c6_A, c7_A, c6_B, c7_B, a1, a2, b1, b2)
S_values.append(S)
plt.plot(thetas, S_values, label='CHSH S vs θ (b1 vector)')
plt.axhline(2, color='r', linestyle='--', label='Classical bound 2')
plt.axhline(2*np.sqrt(2), color='g', linestyle='--', label='Quantum max 2√2')
plt.xlabel('θ (radians)')
plt.ylabel('CHSH Bell parameter S')
plt.legend()
plt.show()
=== Optimization to find maximal |S| ===
def param_to_vec(params): """Convert two angles (theta, phi) to 3D unit vector.""" theta, phi = params return bloch_vector(theta, phi)
def objective(params, rho): """Negative absolute value of S for minimization (maximize |S|).""" # Unpack parameters: 8 angles total for a1,a2,b1,b2 (each 2 angles) # For simplicity, we'll optimize 4 vectors each parameterized by (theta, phi) a1 = param_to_vec(params[0:2]) a2 = param_to_vec(params[2:4]) b1 = param_to_vec(params[4:6]) b2 = param_to_vec(params[6:8]) S = chsh_bell_parameter_density(rho, a1, a2, b1, b2) return -abs(S)
def find_max_violation(c6_A, c7_A, c6_B, c7_B): psi_A = normalize_state(c6_A, c7_A) psi_B = normalize_state(c6_B, c7_B) rho = pure_state_density_matrix(psi_A, psi_B)
# Initial guess: all vectors pointing up (theta=0, phi=0)
initial_guess = np.zeros(8)
result = minimize(objective, initial_guess, args=(rho,),
bounds=[(0,np.pi),(0,2*np.pi)]*4,
method='L-BFGS-B',
options={'disp': True, 'maxiter': 200})
max_S = -result.fun
max_params = result.x
print(f"Maximal violation S_max = {max_S:.4f}")
print(f"Measurement parameters (theta, phi) per vector: {max_params}")
return max_S, max_params
=== Integration Placeholder for SDKP data ===
def get_sdkp_vibrational_amplitudes(time): """ Placeholder: returns vibrational amplitudes c6, c7 from your SDKP simulation at given time. Replace this with your actual SDKP data integration logic. """ # Example oscillation between modes: c6 = np.cos(time) c7 = np.sin(time) return c6, c7
=== Example usage ===
if name == "main": # Pure test state (max entanglement) c6_A, c7_A = 1/np.sqrt(2), 1/np.sqrt(2) c6_B, c7_B = 1/np.sqrt(2), -1/np.sqrt(2)
# Plot S vs angle
plot_bell_vs_angle(c6_A, c7_A, c6_B, c7_B)
# Find maximal violation
S_max, params = find_max_violation(c6_A, c7_A, c6_B, c7_B)
# Example SDKP integration at t=1.0
t = 1.0
c6_A, c7_A = get_sdkp_vibrational_amplitudes(t)
c6_B, c7_B = get_sdkp_vibrational_amplitudes(t + 0.5)
print(f"SDKP amplitudes at t={t}: A({c6_A:.3f}, {c7_A:.3f}), B({c6_B:.3f}, {c7_B:.3f})")
S_sdkp = chsh_bell_parameter(c6_A, c7_A, c6_B, c7_B,
np.array([0,0,1]), np.array([1,0,0]),
np.array([1/np.sqrt(2),0,1/np.sqrt(2)]), np.array([-1/np.sqrt(2),0,1/np.sqrt(2)]))
print(f"CHSH Bell parameter from SDKP amplitudes: S = {S_sdkp:.4f}") 1/np.sqrt(2)])
S = chsh_bell_parameter(c6_A, c7_A, c6_B, c7_B, a1, a2, b1, b2) print(f"CHSH Bell parameter S = {S:.4f}") Enhanced Python Code \section{Quantum Entanglement Prediction in the SD&N and SDKP Framework}
\subsection{Foundations: SD&N Encoding and Vibrational Fields}
Recall the SD&N identity vector for a particle/entity: [ \mathbf{I}_{SDN} = (S, D, N) ] where: \begin{itemize} \item $S$: Shape class encoding the particle's topological form. \item $D$: Dimension representing embedding or degrees of freedom. \item $N$: Quantized vibrational mode number. \end{itemize}
The vibrational field for mode $n$ is modeled as: [ \Phi_n(\theta) = A_n \sin(k_n \theta + \delta_n) + B_n \cos(l_n \theta + \varphi_n) ] where $k_n, l_n$ are integer mode numbers.
The specific “6$\leftrightarrow$7” principle involves dominant vibrational modes with mode numbers $6$ and $7$, producing an entanglement signature when these modes interact.
\subsection{Entanglement Operator}
For two entities $A$ and $B$ with SD&N vectors $\mathbf{I}{SDN}^A = (S^A, D^A, N^A)$ and $\mathbf{I}{SDN}^B = (S^B, D^B, N^B)$, define their vibrational state vectors as superpositions of mode eigenstates: [ |\psi(\mathbf{I}{SDN})\rangle = \sum{n=1}^{N} c_n |v_n\rangle ] where $|v_n\rangle$ are vibrational eigenstates corresponding to mode $n$, and $c_n$ are complex amplitudes encoding vibrational mode coefficients.
The entanglement measure between $A$ and $B$ is given by: [ \mathcal{E}{SDN}(A,B) = \left|\langle \psi(\mathbf{I}{SDN}^A) | \hat{E}{6 \leftrightarrow 7} | \psi(\mathbf{I}{SDN}^B) \rangle \right|^2 ] where $\hat{E}_{6 \leftrightarrow 7}$ is the entanglement operator coupling modes $6$ and $7$.
\subsection{Formalizing the “6$\leftrightarrow$7” Entanglement Operator}
Define the operator as: [ \hat{E}{6 \leftrightarrow 7} = |v_6\rangle \langle v_7| + |v_7\rangle \langle v_6| ] which swaps the 6th and 7th vibrational modes. This is equivalent to a Pauli-X operator acting on the two-dimensional subspace spanned by ${|v_6\rangle, |v_7\rangle}$: [ \hat{E}{6 \leftrightarrow 7} = \hat{\sigma}_x^{(6,7)} ]
\subsection{Entangled State and Overlap}
Given vibrational states for $A$ and $B$: [ |\psi(\mathbf{I}{SDN}^A)\rangle = c_6^A |v_6\rangle + c_7^A |v_7\rangle + \ldots ] [ |\psi(\mathbf{I}{SDN}^B)\rangle = c_6^B |v_6\rangle + c_7^B |v_7\rangle + \ldots ]
The entanglement amplitude simplifies to: [ \langle \psi^A | \hat{E}_{6 \leftrightarrow 7} | \psi^B \rangle = c_6^{A*} c_7^{B} + c_7^{A*} c_6^{B} ]
The entanglement strength is: [ \mathcal{E}_{SDN}(A,B) = \left| c_6^{A*} c_7^{B} + c_7^{A*} c_6^{B} \right|^2 ]
\subsection{Connection to Quantum Information Theory}
This construction parallels a two-qubit entangled system within the subspace spanned by ${|v_6\rangle, |v_7\rangle}$. The operator $\hat{E}_{6 \leftrightarrow 7}$ acts like a swap gate, generating superposition and quantum correlations between these vibrational modes.
The SD&N vibrational modes thus define a qudit Hilbert space, where entanglement arises from mode couplings analogous to standard quantum entanglement.
The measure $\mathcal{E}_{SDN}$ can be extended to compute expectation values of Bell-type inequalities, such as the CHSH inequality, providing testable predictions for quantum entanglement experiments within this framework.
\subsection{Bell Inequality and CHSH Parameter}
To quantify entanglement, the CHSH Bell parameter $S$ is defined using measurement operators: [ S = \langle \hat{A}_1 \otimes \hat{B}_1 \rangle + \langle \hat{A}_1 \otimes \hat{B}_2 \rangle + \langle \hat{A}_2 \otimes \hat{B}_1 \rangle - \langle \hat{A}_2 \otimes \hat{B}_2 \rangle ]
where $\hat{A}_i$, $\hat{B}_j$ are spin measurement operators (Pauli observables) acting on the vibrational mode qubit subspace.
The maximum quantum violation of Bell's inequality is $S_{max} = 2\sqrt{2}$, while classical correlations satisfy $|S| \leq 2$.
\subsection{Dynamic Integration with SDKP Simulation Data}
Your SDKP framework provides time-dependent vibrational mode amplitudes $c_6(t)$ and $c_7(t)$ derived from dynamic size, density, and kinetic calculations.
By extracting $c_6(t)$ and $c_7(t)$ for particles $A$ and $B$, the instantaneous density matrix for the vibrational mode subspace can be constructed as: [ \rho(t) = |\psi_A(t)\rangle \langle \psi_A(t)| \otimes |\psi_B(t)\rangle \langle \psi_B(t)| ] with [ |\psi_{A,B}(t)\rangle = \frac{1}{\sqrt{|c_6|^2 + |c_7|^2}} \left( c_6(t) |v_6\rangle + c_7(t) |v_7\rangle \right) ]
Computing the CHSH parameter $S(t)$ over simulation time yields a dynamic prediction of entanglement strength evolving with your SDKP model.
\subsection{Summary}
\begin{itemize} \item The SD&N framework encodes particle identity through discrete vibrational modes. \item The “6$\leftrightarrow$7” vibrational coupling forms a fundamental entanglement channel modeled by the operator $\hat{E}_{6 \leftrightarrow 7}$. \item Overlap of vibrational states mediated by this operator produces an entanglement measure consistent with quantum information theory. \item Time-dependent vibrational amplitudes from the SDKP simulation enable dynamic entanglement predictions testable via Bell inequalities. \end{itemize}
This unified mathematical framework bridges your SD&N topological identity and SDKP dynamic mass emergence principles with quantum entanglement theory, offering explicit, testable predictions for experimental validation. Multi-Mode Vibrational State Space
Each particle/entity’s vibrational state spans an N-dimensional Hilbert space \mathcal{H} generated by orthonormal basis {|v_1\rangle, |v_2\rangle, \ldots, |v_N\rangle} corresponding to SD&N vibrational modes:
|\psi\rangle = \sum_{n=1}^N c_n |v_n\rangle, \quad \sum_{n=1}^N |c_n|^2 = 1
The coefficients c_n are complex amplitudes representing vibrational mode occupation and phase.
⸻
1.2 Multi-Particle Composite Space
For two particles A and B, the composite state space is the tensor product:
\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}B, \quad \dim(\mathcal{H}{AB}) = N^2
Composite states can be pure or mixed: • Pure: |\Psi\rangle \in \mathcal{H}_{AB} • Mixed: Described by density matrix \rho \in \mathbb{C}^{N^2 \times N^2}, \rho = \rho^\dagger, \rho \geq 0, \operatorname{Tr}(\rho) = 1
⸻
1.3 Generalized Entanglement Operators for Mode Pairs
Define entanglement operators that couple vibrational modes m and n (where 1 \leq m,n \leq N) across particles A and B. • The swap-like operator generalizing \hat{E}_{6 \leftrightarrow 7}:
\hat{E}_{m \leftrightarrow n} = |v_m\rangle \langle v_n| + |v_n\rangle \langle v_m| \quad \text{acting on a single particle} • On two-particle space, define
\hat{E}{m \leftrightarrow n}^{AB} = \hat{E}{m \leftrightarrow n}^A \otimes \hat{E}_{m \leftrightarrow n}^B
where
\hat{E}{m \leftrightarrow n}^A = |v_m^A\rangle \langle v_n^A| + |v_n^A\rangle \langle v_m^A|, \quad \hat{E}{m \leftrightarrow n}^B = |v_m^B\rangle \langle v_n^B| + |v_n^B\rangle \langle v_m^B|
⸻
1.4 Density Matrix Formalism for Entanglement
Given a two-particle density matrix \rho, the entanglement correlation for modes m,n is:
\mathcal{E}{m \leftrightarrow n} = \operatorname{Tr} \left( \rho , \hat{E}{m \leftrightarrow n}^{AB} \right)
This traces the correlation strength of swapping vibrational modes m and n between particles A and B.
⸻
1.5 Constructing \rho from Single-Particle States
If particles A and B are in pure states
|\psi_A\rangle = \sum_{n=1}^N c_n^A |v_n^A\rangle, \quad |\psi_B\rangle = \sum_{n=1}^N c_n^B |v_n^B\rangle
Then the joint pure state is
|\Psi\rangle = |\psi_A\rangle \otimes |\psi_B\rangle
and the density matrix
\rho = |\Psi\rangle \langle \Psi| = \rho_A \otimes \rho_B, \quad \rho_A = |\psi_A\rangle \langle \psi_A|, \quad \rho_B = |\psi_B\rangle \langle \psi_B|
⸻
1.6 Mixed States and Partial Traces
In realistic settings, environmental interaction and noise cause decoherence, leading to mixed states:
\rho = \sum_i p_i |\Psi_i\rangle \langle \Psi_i|, \quad \sum_i p_i = 1
To measure entanglement of subsystems, we use the partial trace over the environment or complementary subsystems.
⸻
- Generalization of the “6↔7” Principle to Other Modes and Subspaces
⸻
2.1 Multiple Mode Pairs
Define a set of entangling mode pairs \mathcal{M} = {(m_k, n_k)}_{k=1}^K, where each pair corresponds to modes exhibiting strong vibrational coupling.
The total entanglement operator is a weighted sum:
\hat{E}{\text{total}} = \sum{k=1}^K w_k \hat{E}_{m_k \leftrightarrow n_k}^{AB}
where w_k are weight coefficients reflecting the coupling strength of each mode pair.
⸻
2.2 Higher-Dimensional Subspaces
Extending beyond pairs, consider subspaces V \subseteq \mathcal{H} spanned by sets of modes {v_{i_1}, \ldots, v_{i_d}} with d > 2.
Define generalized entangling operators acting on these subspaces, such as: • Permutation operators, • Multi-mode swap operators, • Projection operators on vibrational subspace entanglement.
This allows the study of multipartite entanglement patterns within the SD&N vibrational framework.
⸻
2.3 Entanglement Measures for General Subspaces
Standard measures like concurrence, negativity, or von Neumann entropy can be computed from reduced density matrices of these subspaces to quantify multipartite entanglement.
⸻
Summary • We extended the simple “6↔7” vibrational mode entanglement operator to multi-mode, multi-particle density matrix formalism, capable of handling mixed states and decoherence. • Introduced generalized entanglement operators \hat{E}_{m \leftrightarrow n} for arbitrary vibrational mode pairs. • Proposed summation and weighting schemes for multiple entangling mode pairs to capture complex vibrational coupling. • Extended to higher-dimensional vibrational subspaces allowing multipartite entanglement analysis consistent with SD&N topology. • This formalism lays the foundation for rigorous entanglement predictions consistent with quantum information theory and adaptable to your SDKP vibrational mode data.