정보 시각화 특강 - Esantomi/digital-humanities GitHub Wiki
목차
특강 정보
제목 : Information Visualization and Visual Analytics - Introduction
강의일 : 2022-11-17 (14:00-)
강의자 : 서울대학교 컴퓨터공학과 서진욱 교수님
1. Visualization
시각화(Visualization)
The use of computer supported, interactive, visual representations of abstract data to amplify cognition
Stuart Card, Jock Mackinlay, Ben Schneiderman, 1999
시각화의 두 분야
과학적 시각화(Scientific Visualization)
구상 데이터
실제 대상을 실제 대상과 최대한 유사하게 그래픽적으로 구현하는 연구
코딩을 못해도 도구를 활용해 구현 가능
정보 시각화(Information Visualization)
추상 데이터(Abstract data)
어떻게 구현해야 한다는 정답이 없음
외적 표상을 쓰는 이유? (Why use an external representation?)
Finding the artificial memory that best supports our natural means of perception (Bertin, 1983)
두 자리 수 곱셈을 암산 대신 수식을 쓰며 하는 이유는?
시각화의 특징?
Statistical characterization of datasets is a very powerful approach
losing information through summarization → hide the true structure
Why show the data in details?
identical descriptive statistics → very diffferent structures
what about features hidden in larger and/or more complex datasets?
Same stats, different graphs
Generating datasets with varied appearance and identical statistics
똑같은 통계 값을 다르게 시각화할 수 있음
InfoVis Reference Model
InfoVis is interdisciplinary
Graphics : drawing in real time (< 100ms)
Cognitive psychology : appropriate representation
HCI : using users and tasks to guide design and evaluation
Historical Examples
William Playfair
“charts communicated better than tables of data”
여러 시각화 차트를 고안
Advance of Napoleon's Grande Armée into Russia in 1812
Charles Joseph Minard, 1861
1854 London Cholera Epidemic
John Snow : 물이 문제일 것! 지도 위에 시각화
Rose-petal diagram(= Nightingale's diagrams)
Florence Nightingale's diagram showing the dramatic reduction in death rates in the hospitals of Scutari following the changes she introduced.
2. Perception
Perception for InfoVis
Relative perception
Relative vs Absolute Judgements
Luminance contrast - Simultaneous Brightness Contrast
Luminance perception is based on relative judgements
Steven's Power Law
an empirical relationship in psychophysics between an increased intensity or strength in a physical stimulus and the perceived magnitude increase in the sensation created by the stimulus.
Weber's Law
“the minimum increase of stimulus which will produce a perceptible increase of sensation is proportional to the pre-existent stimulus.”
Preattentive processing
Treemap
데이터의 계층 구조를 보여주는 사각형 배열
컴퓨터 하드 드라이브에 저장된 파일의 구조와 크기를 보여 주는 방법으로 고안됨
SequoiaView
3. Design Principles
Two criteria for evaluating graphical designs
Expressiveness
vis idiom should express all of , and only , the information in the dataset attributes
Effectiveness
Most important attributes should be encoded with the most effective channels
ranking of channels (channel에 따라 effectiveness가 상이함)
Effectiveness of Visual Encoding
즉, 똑같은 데이터 셋도 어떻게 표현하는지에 따라 다르게 전달될 수 있음
1D, 2D, 3D 중 3D가 가장 비직관적?
Schneiderman, Tufte
Schneiderman's Guidelines : Visual information seeking mantra
overview first, zoom and filter, details on demand
큰 그림을 먼저 보여 주고, 확대하고 필터링할 수 있게끔 하고, 요구에 따라 세부 사항을 볼 수 있게 함
Tufte's Design Principles
Tell the truth
Do it effectively with clarity, precision...
The Feynman-Tufte Principle
“Simple design, intense content”
April 2005 Scientific American
others
Measuring Misrepresentation
Visual attribute value should be directly proportional to data attribute value
Lie factor = Size of effect shown in graphic / Size of effect in data
Maximize data-ink ratio
Avoid chartjunk
extraneous visual elements that detract from information
Use small multiples
repeat visually similar graphical elements nearby rather than spreading far apart
The same graphical design structure is repeated
Learn once and compare → invite comparisons
Reveal, all at once, a scope of alternatives, a range of options → overview
Use narratives of space and time
Tell a story of position and chronology through visual elements
Power of negative space
🗂️ Page Index for this GitHub Wiki