General Calendar - EMbeDS-education/ComputingDataAnalysisModeling20242025 GitHub Wiki
The general calendar of the courses is provided below (or will be made available here when ready).
- The courses are planned to be run both in the first (end of 2024) and second (beginning of 2025) semesters of academic year 2024/2025
ASM: Applied Statistical Modeling. Chiara Seghieri and Claudio Mazzi, 20h
- First semester: 14.11.2024 - 11.12.2024, 20h (lectures and practicum), 4 weeks.
ASM Calendar:
Date | Time | Topic (may change according to pace of classes) | Location |
---|---|---|---|
14/11 | 15-17 | Introduction to the course and to linear regression | Centrale, Aula 2 |
19/11 | 14-17 | Linear regression: model diagnostics, multiple linear regression | Alliata, Aula 1 |
25/11 | 17-20 | GLM introduction, logit model | Maffi, Aula 2 |
29/11 | 14-17 | Probit model, ordinal logit and probit | Centrale, Aula 2 |
3/12 | 17-20 | Poisson regression and other GLMs | Alliata, Aula 1 |
9/12 | 14-17 | Random effect models | Alliata, Aula 1 |
11/12 | 14-17 | Recap and applications | Centrale, Aula 4 |
[INFORMATION NON UPDATED FOR ASM2] ASM2: Applied Statistical Modeling 2. Valentina Lorenzoni, 20h
- Second semester: xx.02.2025 - xx.03.2025, 20h (lectures and practicum), 4 weeks.
ASM2 Calendar:
Date | Time | Topic (may change according to pace of classes) | Location |
---|---|---|---|
14/04 | 16-18 | Introduction to the course and to time-to-event data | Boyl, Aula 1 |
16/04 | 16-18 | Analysis of time to event data | Boyl, Aula 1 |
13/05 | 16-18 | Non-parametric Cox regression model | Boyl, Aula 1 |
20/05 | 16-18 | Parametric regression models for time-to-event data | Boyl, Aula 1 |
27/05 | 16-18 | Competing risks analysis | Boyl, Aula 1 |
PDAI: Programming & Data Analytics & AI. Andrea Vandin, 40h
- Module 1, First semester, 20h (14h lectures, 6h practicum), 3 weeks,
- Module 2-PM, Second semester, 20h (14h lectures, 6h practicum), 3 weeks,
PDAI 1
Class | Date | Time | Topic (may change according to pace of classes) | Location |
---|---|---|---|---|
1 | MON 11/11/24 | 15:00-17:00 2 hours | Introduction Console I/O & Variables |
Sede centrale, Aula Magna |
2 | FRI 15/11/24 | 15:00-18:00, 3 hours | Data types & operations | Boyl, Sala conferenze |
3 | MON 18/11/24 | 14:00-17:00, 3 hours | Collections & First taste of plots | Sede centrale, Aula 3 |
4 | FRI 22/11/24 | 14:00-17:00, 3 hours | Control statements (if, loops) CSV manipulation of COVID-19 data |
Sede centrale, Aula 3 |
5 | WED 27/11/24 | 14:00-17:00, 3 hours | Functions Creation of wordclouds from online news |
Sede centrale, Aula 3 |
6 | THU 28/11/24 | 14:00-17:00, 3 hours | Modules & Exceptions & OOP Applications to economic ABM models |
Maffi, Aula 14 |
7 | FRI 29/11/24 | 14:00-17:00, 3 hours | Brief intro to Advanced libraries for data manipulation (NumPy & Pandas) Application to COVID-19 and Financial data |
Sede centrale, Aula Magna |
PDAI PM
The calendar of PDAI PM may be subject to change
Class | Date | Time | Topic (may change according to pace of classes) | Location |
---|---|---|---|---|
1 | Wed 05/02/25 | 16:00-18:00 | Introduction to Process-oriented Data Science with Disco | Sede centrale, Aula 3 |
2 | Fri 07/02/25 | 14:00-16:00 | Advanced libraries for data manipulation and visualization (Numpy) | Via Maffi, L'EMbeDS Lab (Aula 3) |
3 | Mon 10/02/25 | 14:00-17:00 | Advanced libraries for data manipulation and visualization (Pandas) | Via Maffi, L'EMbeDS Lab (Aula 3) |
4 | Wed 12/02/25 | 14:00-17:00 | The Python library for Process Mining: PM4Py PM and Data: Case studies, benchmarks... Data lab |
Sede centrale, Aula 3 |
5 | Mon 17/02/25 | 14:00-17:00 | The Python library for Process Mining: PM4Py PM and Data: Case studies, benchmarks... Data lab |
Via Maffi, L'EMbeDS Lab (Aula 3) |
6 | Wed 19/02/25 | 14:00-17:00 | Petri nets and the Alpha Miner Data lab |
Boyl, Aula 3 |
7 | Mon 24/02/25 | 15:00-17:00 | Dependency Graphs and Heuristic miner Data lab |
Via Maffi, L'EMbeDS Lab (Aula 3) |
8 | Wed 26/02/25 | 15:00-17:00 | Conformance checking. Data lab |
Boyl, Aula 3 |
SLLD: Statistical Learning & Large Data. Francesca Chiaromonte, 40h
- Module 1, Second semester, 20h (14h lectures, 6h practicum), 3 weeks,
- Module 2, Second semester, 20h (14h lectures, 6h practicum), 3 weeks
SLLD 1
Class | Date | Time | Topic | Lecturer | Location |
---|---|---|---|---|---|
1 | 05/02/25 | 14:00-16:00 | Intro, Clustering | Chiaromonte | Sede Centrale, Aula 3 |
2 | 06/02/25 | 16:00-19:00 | Clustering | Chiaromonte | Via Maffi, L'EMbeDS Lab (Aula 3) |
3 | 07/02/25 | 16:00-19:00 | Principal Components | Chiaromonte | Via Maffi, L'EMbeDS Lab (Aula 3) |
4 | 13/02/25 | 16:00-19:00 | Classification | Chiaromonte | Via Maffi, L'EMbeDS Lab (Aula 3) |
5 | 14/02/25 | 16:00-19:00 | Non-parametrics, Smoothing | Chiaromonte | Via Maffi, L'EMbeDS Lab (Aula 3) |
6 | 20/02/25 | 16:00-19:00 | Cross Validation | Chiaromonte | Via Maffi, L'EMbeDS Lab (Aula 3) |
7 | 21/02/25 | 16:00-19:00 | Resampling | Chiaromonte | Via Maffi, L'EMbeDS Lab (Aula 3) |
SLLD 2
Class | Date | Time | Topic | Lecturer | Location |
---|---|---|---|---|---|
1 | 05/03/25 | 14:00-16:00 | Review Linear and Generalized Linear Models | Chiaromonte | Via Maffi, L'EMbeDS Lab (Aula 3) |
2 | 06/03/25 | 16:00-19:00 | Ridge and LASSO | Chiaromonte | Via Maffi, L'EMbeDS Lab (Aula 3) |
3 | 07/03/25 | 16:00-19:00 | Feature Selection | Chiaromonte | Via Maffi, L'EMbeDS Lab (Aula 3) |
4 | 13/03/25 | 16:00-19:00 | Supervised Dimension Reduction | Chiaromonte | Via Maffi, L'EMbeDS Lab (Aula 3) |
5 | 14/03/25 | 16:00-19:00 | Feature Screening in Ultra-high Dimension | Chiaromonte | Via Maffi, L'EMbeDS Lab (Aula 3) |
6 | 20/03/25 | 16:00-19:00 | Subsampling, Partitioning and Rebalancing | Chiaromonte | Via Maffi, L'EMbeDS Lab (Aula 3) |
7 | 21/03/25 | 16:00-19:00 | Reducing, Selecting and Leveraging Structure | Chiaromonte | Via Maffi, L'EMbeDS Lab (Aula 3) |
Exam | 09/05/25 | 15:00-19:00 | Project Presentations and Discussion | Chiaromonte | Via Maffi, L'EMbeDS Lab (Aula 3) |
DMPD: Dynamic models for panel data. Laura Magazzini, 10h
- Second semester, 10h, 2 weeks.