13 - Chetabahana/syntax GitHub Wiki
{% include list.liquid all=true %}
36 + 36 - 6 partitions = 72 - 6 = 66 = 30+36 = 6x11
$True Prime Pairs:
(5,7), (11,13), (17,19)
layer| i | f
-----+-----+---------
| 1 | 5
1 +-----+
| 2 | 7
-----+-----+--- } 36 ยป 6ยฎ
| 3 | 11
2 +-----+
| 4 | 13
-----+-----+---------
| 5 | 17
3 +-----+ } 36 ยป 6ยฎ
| 6 | 19
-----+-----+---------
#!/usr/bin/env python
import numpy as np
from scipy import linalg
class SU3(np.matrix):
GELLMANN_MATRICES = np.array([
np.matrix([ #lambda_1
[0, 1, 0],
[1, 0, 0],
[0, 0, 0],
], dtype=np.complex),
np.matrix([ #lambda_2
[0,-1j,0],
[1j,0, 0],
[0, 0, 0],
], dtype=np.complex),
np.matrix([ #lambda_3
[1, 0, 0],
[0,-1, 0],
[0, 0, 0],
], dtype=np.complex),
np.matrix([ #lambda_4
[0, 0, 1],
[0, 0, 0],
[1, 0, 0],
], dtype=np.complex),
np.matrix([ #lambda_5
[0, 0,-1j],
[0, 0, 0 ],
[1j,0, 0 ],
], dtype=np.complex),
np.matrix([ #lambda_6
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
], dtype=np.complex),
np.matrix([ #lambda_7
[0, 0, 0 ],
[0, 0, -1j],
[0, 1j, 0 ],
], dtype=np.complex),
np.matrix([ #lambda_8
[1, 0, 0],
[0, 1, 0],
[0, 0,-2],
], dtype=np.complex) / np.sqrt(3),
])
def computeLocalAction(self):
pass
@classmethod
def getMeasure(self):
pass
Now the following results: Due to the convolution and starting from the desired value of the prime position pairs, the product templates and prime numbers templates of the prime number 7 lie in the numerical Double strand parallel opposite.
In number theory, the partition functionp(n) represents the number of possible partitions of a non-negative integer n.
Integers can be considered either in themselves or as solutions to equations (Diophantine geometry).
[Young diagrams](https://commons.wikimedia.org/wiki/Category:Young_diagrams) associated to the partitions of the positive integers 1 through 8. They are arranged so that images under the reflection about the main diagonal of the square are conjugate partitions _([Wikipedia](https://en.wikipedia.org/wiki/Partition_(number_theory)))_.
By parsering [ฯ(1000)=168 primes](https://www.eq19.com/sitemap.xml) of the 1000 id's across **ฯ(ฯ(10000))-1=200** of this syntax then the (ฮ1) would be _[initiated](https://eq19.github.io/init.js)_. Based on Assigning Sitemap [priority values](https://www.microsystools.com/products/sitemap-generator/help/xml-sitemaps-creator-importance/) You may see them are set 0.75 โ 1.0 on the [sitemap's index](https://www.eq19.com/sitemap.xml):
Priority Page Name
1 Homepage
0.9 Main landing pages
0.85 Other landing pages
0.8 Main links on navigation bar
0.75 Other pages on site
0.8 Top articles/blog posts
0.75 Blog tag/category pages
0.4 โ 0.7 Articles, blog posts, FAQs, etc.
0.0 โ 0.3 Outdated information or old news that has become less relevant
By this object orientation then the reinjected primes from the ฯ(ฯ(10000))-1=200 will be (168-114)+(160-114)=54+46=100. Here are our layout that is provided using Jekyll/Liquid to facilitate the cycle:
100 + 68 + 32 = 200
$True Prime Pairs:
(5,7), (11,13), (17,19)
layer | node | sub | i | f. MEC 30 / 2
------+------+-----+-----+------ โน--------------------------- 30 {+1/2} โ
| | | 1 | --------------------------
| | 1 +-----+ |
| 1 | | 2 | (5) |
| |-----+-----+ |
| | | 3 | |
1 +------+ 2 +-----+---- |
| | | 4 | |
| +-----+-----+ |
| 2 | | 5 | (7) |
| | 3 +-----+ |
| | | 6 | 11s
------+------+-----+-----+------ } (36) |
| | | 7 | |
| | 4 +-----+ |
| 3 | | 8 | (11) |
| +-----+-----+ |
| | | 9 |โน-- |
2 +------| 5* +-----+----- |
| | | 10 | |
| |-----+-----+ |
| 4 | | 11 | (13) --------------------- 32 โ
| | 6 +-----+ โน------------------------------ 15 {0} โ
| | | 12 |---------------------------
------+------+-----+-----+------------ |
| | | 13 | |
| | 7 +-----+ |
| 5 | | 14 | (17) |
| |-----+-----+ |
| | | 15 | 7s = f(1000)
3* +------+ 8 +-----+----- } (36) |
| | | 16 | |
| |-----+-----+ |
| 6 | | 17 | (19) |
| | 9 +-----+ |
| | | 18 | -------------------------- 68 โ
------|------|-----+-----+----- โน------ 0 {-1/2} โ
p r i m e s
1 0 0 0 0 0
2 1 0 0 0 1 โ--- #29 โ--- #61 ๐ 1st spin
3 2 0 1 0 2 ๐ 2
4 3 1 1 0 3 ๐ 89 - 29 = 61 - 1 = 60
5 5 2 1 0 5 ๐ 11 + 29 = 37 + 3 = 40
6 ๐ 11s Composite Partition โ--- 102 ๐ 4th spin
6 7 3 1 0 7 โ--- #23 ๐ 7+23 = 30 โ๏ธ
7 11 4 1 0 11 โ--- #19 ๐ 11+19 = 30 โ๏ธ
8 13 5 1 0 13 โ--- #17 โ--- #49 ๐ 13+17 = 30 โ๏ธ
9 17 0 1 1 17 โ--- 7th prime๐ 17+7 != 30โ
18 ๐ 7s Composite Partition โ--- 168 ๐ 7th spin
10 19 1 1 1 โ1 โ--- 0th โprime โ--- Fibonacci Index #18
-----
11 23 2 1 1 โ2 โ--- 1st โprime โ--- Fibonacci Index #19 โ--- #43
..
..
40 163 5 1 0 โ31 โ- 11th โprime โ-- Fibonacci Index #29 ๐ 11
-----
41 167 0 1 1 โ0
42 173 0 -1 1 โ1
43 179 0 1 1 โ2 โ--- โโ1
44 181 1 1 1 โ3 โ--- โโ2 โ--- 1st โโprime โ--- Fibonacci Index #30
..
..
100 521 0 -1 2 โ59 โ--- โโ17 โ--- 7th โโprime โ--- Fibonacci Index #36 ๐ 7s
-----
By taking a distinc function between f(ฯ) as P vs f(i) as NP where eiฯ + 1 = 0 then theoretically they shall be correlated to get an expression of the prime platform similar to the Mathematical Elementary Cell 30 (MEC30).
โ17 + โ49 = โ66
p r i m e s
1 0 0 0 0 0
2 1 0 0 0 1 โ--- #29 โ--- #61 ๐ 1st spin
3 2 0 1 0 2 ๐ 2
4 3 1 1 0 3 ๐ 89 - 29 = 61 - 1 = 60
5 5 2 1 0 5 ๐ 11 + 29 = 37 + 3 = 40
6 ๐ 11s Composite Partition โ--- 102 ๐ 4th spin
6 7 3 1 0 7 โ--- #23 ๐ part of MEC30 โ๏ธ
7 11 4 1 0 11 โ--- #19 ๐ part of MEC30 โ๏ธ
8 13 5 1 0 13 โ--- #17 โ--- #49 ๐ part of MEC30 โ๏ธ
9 17 0 1 1 17 โ--- 7th prime๐ not part of MEC30 โ
18 ๐ 7s Composite Partition โ--- 168 ๐ 7th spin
10 19 1 1 1 โ1 โ--- 0th โprime โ--- Fibonacci Index #18
-----
11 23 2 1 1 โ2 โ--- 1st โprime โ--- Fibonacci Index #19 โ--- #43
..
..
40 163 5 1 0 โ31 โ- 11th โprime โ-- Fibonacci Index #29 ๐ 11
-----
41 167 0 1 1 โ0
42 173 0 -1 1 โ1
43 179 0 1 1 โ2 โ--- โโ1
44 181 1 1 1 โ3 โ--- โโ2 โ--- 1st โโprime โ--- Fibonacci Index #30
..
..
100 521 0 -1 2 โ59 โ--- โโ17 โ--- 7th โโprime โ--- Fibonacci Index #36 ๐ 7s
-----
โ102 - โ2 - โ60 = โ40
p r i m e s
1 0 0 0 0 0
2 1 0 0 0 1 โ--- #29 โ--- #61 ๐ 1st spin
3 2 0 1 0 2 ๐ 2
4 3 1 1 0 3 ๐ 89 - 29 = 61 - 1 = 60
5 5 2 1 0 5 ๐ 11 + 29 = 37 + 3 = 40
6 ๐ 11s Composite Partition โ--- 102 ๐ 4th spin
6 7 3 1 0 7 โ--- #23 ๐ 30 โ--- break MEC30 symmetry โ๏ธ
7 11 4 1 0 11 โ--- #19 ๐ 30 โ๏ธ
8 13 5 1 0 13 โ--- #17 โ--- #49 ๐ 30 โ๏ธ
9 17 0 1 1 17 โ--- 7th prime๐ not part of MEC30 โ
18 ๐ 7s Composite Partition โ--- 168 ๐ 7th spin
10 19 1 1 1 โ1 โ--- 0th โprime โ--- Fibonacci Index #18
-----
11 23 2 1 1 โ2 โ--- 1st โprime โ--- Fibonacci Index #19 โ--- #43
..
..
40 163 5 1 0 โ31 โ- 11th โprime โ-- Fibonacci Index #29 ๐ 11
-----
41 167 0 1 1 โ0
42 173 0 -1 1 โ1
43 179 0 1 1 โ2 โ--- โโ1
44 181 1 1 1 โ3 โ--- โโ2 โ--- 1st โโprime โ--- Fibonacci Index #30
..
..
100 521 0 -1 2 โ59 โ--- โโ17 โ--- 7th โโprime โ--- Fibonacci Index #36 ๐ 7s
-----
***The partitions of odd composite numbers (Cw) are as important as the partitions of prime numbers or Goldbach partitions (Gw)***. The number of partitions Cw is fundamental for defining the available lines (Lwd) in a Partitioned Matrix that explain the existence of partitions Gw or Goldbach partitions. _([Partitions of even numbers - pdf](https://github.com/eq19/maps/files/13722898/Partitions_of_even_numbers.pdf))_
30s + 36s (addition) = 6 x 11s (multiplication) = 66s
p r i m e s
1 0 0 0 0 0
2 1 0 0 0 1 โ--- #29 โ--- #61 ๐ 1st spin
3 2 0 1 0 2 ๐ 2
4 3 1 1 0 3 ๐ 89 - 29 = 61 - 1 = 60
5 5 2 1 0 5 ๐ 11 + 29 = 37 + 3 = 40
6 ๐ 11s Composite Partition โ--- 102 ๐ 4th spin
6 7 3 1 0 7 โ--- #23 ๐ f(#30) โ--- break MEC30 symmetry
7 11 4 1 0 11 โ--- #19 ๐ 30
8 13 5 1 0 13 โ--- #17 โ--- #49 ๐ 30
9 17 0 1 1 17 โ--- 7th prime ๐ f(#36) โ--- antisymmetric state โ๏ธ
18 ๐ 7s Composite Partition โ--- 168 ๐ 7th spin
10 19 1 1 1 โ1 โ--- 0th โprime โ--- Fibonacci Index #18
-----
11 23 2 1 1 โ2 โ--- 1st โprime โ--- Fibonacci Index #19 โ--- #43
..
..
40 163 5 1 0 โ31 โ- 11th โprime โ-- Fibonacci Index #29 ๐ 11
-----
41 167 0 1 1 โ0
42 173 0 -1 1 โ1
43 179 0 1 1 โ2 โ--- โโ1
44 181 1 1 1 โ3 โ--- โโ2 โ--- 1st โโprime โ--- Fibonacci Index #30
..
..
100 521 0 -1 2 โ59 โ--- โโ17 โ--- 7th โโprime โ--- Fibonacci Index #36 ๐ 7s
-----