aList = [1,2,3,4,5]
bList = [1,3,5,7,9]
aList+bList
 
[1, 2, 3, 4, 5, 1, 3, 5, 7, 9]
 
import numpy as np
aArray = np.array(aList)
bArray = np.array(bList)
 
array([ 2,  5,  8, 11, 14])
 
import pandas as pd
aSeries = pd.Series(aArray, index=pd.date_range("20180101",periods=len(aArray), freq="D"))
bSeries = pd.Series(bArray, index=pd.date_range("20180101",periods=len(bArray), freq="D")) 
cSeries = aSeries+bSeries
dSeries = aSeries*bSeries
 
abDF = pd.DataFrame({'a': aSeries, 'b':bSeries}) 
  
    
       | 
      a | 
      b | 
    
  
  
    
      | 2018-01-01 | 
      1 | 
      1 | 
    
    
      | 2018-01-02 | 
      2 | 
      3 | 
    
    
      | 2018-01-03 | 
      3 | 
      5 | 
    
    
      | 2018-01-04 | 
      4 | 
      7 | 
    
    
      | 2018-01-05 | 
      5 | 
      9 | 
    
  
 
pd.concat([aSeries, bSeries], axis=1, keys=['a','b'])
 
  
    
       | 
      a | 
      b | 
    
  
  
    
      | 2018-01-01 | 
      1 | 
      1 | 
    
    
      | 2018-01-02 | 
      2 | 
      3 | 
    
    
      | 2018-01-03 | 
      3 | 
      5 | 
    
    
      | 2018-01-04 | 
      4 | 
      7 | 
    
    
      | 2018-01-05 | 
      5 | 
      9 | 
    
  
 
cdDF = pd.DataFrame({'a': cSeries, 'b':dSeries}) 
abcdPN = pd.Panel({'abDF': abDF, 'cdDF': cdDF}) 
abcdPN.transpose(2,1,0).to_frame(False)
 
  
    
       | 
       | 
      a | 
      b | 
    
    
      | major | 
      minor | 
       | 
       | 
    
  
  
    
      | 2018-01-01 | 
      abDF | 
      1 | 
      1 | 
    
    
      | cdDF | 
      2 | 
      1 | 
    
    
      | 2018-01-02 | 
      abDF | 
      2 | 
      3 | 
    
    
      | cdDF | 
      5 | 
      6 | 
    
    
      | 2018-01-03 | 
      abDF | 
      3 | 
      5 | 
    
    
      | cdDF | 
      8 | 
      15 | 
    
    
      | 2018-01-04 | 
      abDF | 
      4 | 
      7 | 
    
    
      | cdDF | 
      11 | 
      28 | 
    
    
      | 2018-01-05 | 
      abDF | 
      5 | 
      9 | 
    
    
      | cdDF | 
      14 | 
      45 | 
    
  
 
计算每一列的加总
{item: value.sum() for item, value in abDF.iteritems()} 
计算每一行的加总
{index: value.sum() for index, value in abDF.iterrows()} 
{Timestamp('2018-01-01 00:00:00', freq='D'): 2,
 Timestamp('2018-01-02 00:00:00', freq='D'): 5,
 Timestamp('2018-01-03 00:00:00', freq='D'): 8,
 Timestamp('2018-01-04 00:00:00', freq='D'): 11,
 Timestamp('2018-01-05 00:00:00', freq='D'): 14}