aList = [1,2,3,4,5]
bList = [1,3,5,7,9]
aList+bList
[1, 2, 3, 4, 5, 1, 3, 5, 7, 9]
import numpy as np
aArray = np.array(aList)
bArray = np.array(bList)
array([ 2, 5, 8, 11, 14])
import pandas as pd
aSeries = pd.Series(aArray, index=pd.date_range("20180101",periods=len(aArray), freq="D"))
bSeries = pd.Series(bArray, index=pd.date_range("20180101",periods=len(bArray), freq="D"))
cSeries = aSeries+bSeries
dSeries = aSeries*bSeries
abDF = pd.DataFrame({'a': aSeries, 'b':bSeries})
|
a |
b |
2018-01-01 |
1 |
1 |
2018-01-02 |
2 |
3 |
2018-01-03 |
3 |
5 |
2018-01-04 |
4 |
7 |
2018-01-05 |
5 |
9 |
pd.concat([aSeries, bSeries], axis=1, keys=['a','b'])
|
a |
b |
2018-01-01 |
1 |
1 |
2018-01-02 |
2 |
3 |
2018-01-03 |
3 |
5 |
2018-01-04 |
4 |
7 |
2018-01-05 |
5 |
9 |
cdDF = pd.DataFrame({'a': cSeries, 'b':dSeries})
abcdPN = pd.Panel({'abDF': abDF, 'cdDF': cdDF})
abcdPN.transpose(2,1,0).to_frame(False)
|
|
a |
b |
major |
minor |
|
|
2018-01-01 |
abDF |
1 |
1 |
cdDF |
2 |
1 |
2018-01-02 |
abDF |
2 |
3 |
cdDF |
5 |
6 |
2018-01-03 |
abDF |
3 |
5 |
cdDF |
8 |
15 |
2018-01-04 |
abDF |
4 |
7 |
cdDF |
11 |
28 |
2018-01-05 |
abDF |
5 |
9 |
cdDF |
14 |
45 |
计算每一列的加总
{item: value.sum() for item, value in abDF.iteritems()}
计算每一行的加总
{index: value.sum() for index, value in abDF.iterrows()}
{Timestamp('2018-01-01 00:00:00', freq='D'): 2,
Timestamp('2018-01-02 00:00:00', freq='D'): 5,
Timestamp('2018-01-03 00:00:00', freq='D'): 8,
Timestamp('2018-01-04 00:00:00', freq='D'): 11,
Timestamp('2018-01-05 00:00:00', freq='D'): 14}