Performance Guide v0.8.0 - Bryantad/Sona GitHub Wiki
Performance Guide - Sona v0.8.0
High Performance with Cognitive Accessibility - Proving They Can Coexist
π The v0.8.0 Performance and Accessibility Revolution
Welcome to the performance guide for Sona v0.8.0! This release represents a revolutionary breakthrough - proving that cognitive accessibility and high performance can coexist beautifully. Sona v0.8.0 maintains production-ready performance while introducing groundbreaking accessibility features.
What Makes v0.8.0 Special?
Performance: Production-ready speed maintained
Accessibility: Neurodivergent-first architecture added
AI Integration: 70M parameter model for cognitive support
Memory Efficiency: Optimized for accessibility features
Innovation: First accessibility-first language with pro performance
π Performance Baseline - v0.7.1
Comprehensive Benchmarks
Here are the official performance metrics for Sona v0.7.1:
// Performance Test Results (operations per second)
integer_arithmetic: 6,106 ops/sec // Addition, subtraction, multiplication
string_operations: 9,847 ops/sec // Concatenation, manipulation
function_calls: 1,981 ops/sec // Function definition and execution
variable_assignment: 4,139 ops/sec // Variable creation and assignment
// Overall Average: 5,282 operations per second
Real-World Performance
// Example: Calculator Performance Test
let start_time = time.now()
// Perform 1000 calculations
for i in range(1000) {
let result = (i * 2) + (i / 3) - (i % 5)
print("Calculation " + str(i) + ": " + str(result))
}
let end_time = time.now()
let duration = end_time - start_time
print("Completed 1000 calculations in " + str(duration) + " seconds")
// Expected: ~0.16 seconds (6,106 ops/sec)
π§ Using the Performance Tools
Built-in Performance Benchmarking
Sona v0.7.1 includes comprehensive performance testing tools:
# Run the official performance benchmark
python performance_baseline_fixed.py
# Output:
# β
Sona v0.7.1 Performance Baseline
# ========================================
# Integer Arithmetic: 6,106 ops/sec
# String Operations: 9,847 ops/sec
# Function Calls: 1,981 ops/sec
# Variable Assignment: 4,139 ops/sec
# ========================================
# Average Performance: 5,282 ops/sec
Custom Performance Testing
Create your own performance tests:
// custom_benchmark.sona
import time
import math
func benchmark_function(test_name, iterations, test_func) {
print("Running benchmark: " + test_name)
let start_time = time.now()
for i in range(iterations) {
test_func(i)
}
let end_time = time.now()
let duration = end_time - start_time
let ops_per_sec = iterations / duration
print(" Completed " + str(iterations) + " iterations")
print(" Duration: " + str(duration) + " seconds")
print(" Performance: " + str(ops_per_sec) + " ops/sec")
print("")
}
// Example usage
func arithmetic_test(i) {
let result = (i * 2) + (i * 3) - (i / 2)
}
func string_test(i) {
let text = "Hello " + str(i) + " world!"
}
// Run benchmarks
benchmark_function("Arithmetic Operations", 1000, arithmetic_test)
benchmark_function("String Operations", 1000, string_test)
β‘ Performance Optimization Tips
1. Leverage Built-in Operations
// Fast - uses optimized built-in operations
let numbers = [1, 2, 3, 4, 5]
let sum = math.sum(numbers)
// Slower - manual loop
let sum = 0
for num in numbers {
sum = sum + num
}
2. Optimize String Operations
// Fast - single concatenation
let message = "Hello " + name + "! Welcome to Sona."
// Slower - multiple concatenations
let message = "Hello "
message = message + name
message = message + "! Welcome to Sona."
3. Use Efficient Data Structures
// Fast - dictionary lookup
let lookup = {"key1": "value1", "key2": "value2"}
let result = lookup.key1
// Slower - array search
let pairs = ["key1", "value1"], ["key2", "value2"](/Bryantad/Sona/wiki/"key1",-"value1"],-["key2",-"value2")
let result = ""
for pair in pairs {
if pair[0] == "key1" {
result = pair[1]
break
}
}
4. Function Call Optimization
// Fast - direct operations
let result = x * 2 + y * 3
// Slower - unnecessary function calls
func multiply_by_two(n) { return n * 2 }
func multiply_by_three(n) { return n * 3 }
let result = multiply_by_two(x) + multiply_by_three(y)
π§ͺ Experimental Type System Performance
Type-Aware Interpreter (Experimental)
Sona v0.7.1 includes an experimental type-aware interpreter that can provide additional performance benefits:
# Enable experimental type-aware interpreter
from sona.type_aware_interpreter import TypeAwareSonaInterpreter
# Create type-aware interpreter
interpreter = TypeAwareSonaInterpreter(
strict_typing=False, # Gradual typing
enable_type_optimizations=True # Performance optimizations
)
# Get performance statistics
stats = interpreter.get_type_statistics()
print(f"Type optimizations applied: {stats['type_optimizations_applied']}")
Type-Guided Optimizations
// Future: Type annotations for optimization (experimental)
func calculate_area(width: int, height: int) -> int {
return width * height // Type system can optimize integer operations
}
// The type system can apply optimizations when types are known
let area = calculate_area(10, 20) // Optimized integer multiplication
π Performance Monitoring
Real-Time Performance Tracking
// performance_monitor.sona
import time
class PerformanceMonitor {
constructor() {
self.measurements = {}
}
start_measurement(name) {
self.measurements[name] = time.now()
}
end_measurement(name) {
if name in self.measurements {
let duration = time.now() - self.measurements[name]
print(name + " took " + str(duration) + " seconds")
return duration
}
return 0
}
}
// Usage
let monitor = PerformanceMonitor()
monitor.start_measurement("Data Processing")
// ... your code here ...
monitor.end_measurement("Data Processing")
Memory Usage Monitoring
// memory_monitor.sona
import sys
func check_memory_usage() {
// Note: This requires system integration
print("Memory monitoring in development for v0.8.0")
}
π― Performance Best Practices
1. Profile Before Optimizing
Always measure performance before making optimizations:
# Run performance baseline
python performance_baseline_fixed.py
# Profile your specific application
python -m sona your_app.sona --profile
2. Focus on Hot Paths
Identify the most frequently executed code:
// Use performance monitoring to identify bottlenecks
let monitor = PerformanceMonitor()
for i in range(10000) {
monitor.start_measurement("hot_path")
// Your frequently executed code here
monitor.end_measurement("hot_path")
}
3. Batch Operations
Group similar operations together:
// Fast - batch processing
let numbers = [1, 2, 3, 4, 5]
let results = []
for num in numbers {
results.append(num * 2)
}
// Slower - individual operations
let result1 = 1 * 2
let result2 = 2 * 2
let result3 = 3 * 2
// ...
π SonaβPython Transpiler Performance
Performance Comparison: Interpreter vs Transpiler
Sona v0.7.1 introduces a production-grade transpiler that converts Sona code to Python for execution. Here's how it compares to the interpreter:
Execution Method | Performance | Use Case | Best For |
---|---|---|---|
Sona Interpreter | ~5,000 ops/sec | Development, prototyping | Learning, rapid iteration |
Python Transpiler | ~50,000+ ops/sec | Production, performance-critical | Deployment, integration |
When to Use Each Approach
π§ Use Sona Interpreter For:
- Development and prototyping
- Learning Sona syntax and features
- Quick testing and experimentation
- REPL-style interactive programming
π Use Python Transpiler For:
- Production deployments
- Performance-critical applications
- Integration with Python ecosystems
- Debugging with Python tools
Transpiler Performance Benefits
Raw Performance
// Performance Test Example
let start = time.now()
for i in range(10000) {
let result = (i * 2) + (i / 3) - (i % 5)
}
let duration = time.now() - start
print("Execution time:", duration)
Performance Results:
- Interpreter: ~2.5 seconds
- Transpiler: ~0.25 seconds
- Improvement: 10x faster execution
Memory Efficiency
The transpiler generates lean Python code that:
- Uses Python's optimized memory management
- Avoids interpreter overhead
- Leverages Python's built-in optimizations
Using the Transpiler
Basic Usage
# Transpile and run immediately
sona compile-py myprogram.sona --run
# Generate Python file for deployment
sona compile-py myprogram.sona --output myprogram.py
python myprogram.py
Performance Profiling
# Profile transpiled code with Python tools
sona compile-py myprogram.sona --output myprogram.py
python -m cProfile myprogram.py
Integration with Python Ecosystem
The transpiler opens up access to Python's vast ecosystem:
# In your generated Python code, you can add:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# Your transpiled Sona code runs alongside Python libraries
Best Practices for Performance
- Develop with interpreter for fast feedback
- Test with transpiler for production validation
- Profile with Python tools for optimization
- Deploy transpiled code for maximum performance
For complete transpiler documentation, see the Transpiler Guide.
π οΈ Troubleshooting Performance Issues
Common Performance Problems
-
Excessive String Concatenation
// Problem: Building strings in loops let result = "" for i in range(1000) { result = result + str(i) // Creates new string each time } // Solution: Use arrays and join let parts = [] for i in range(1000) { parts.append(str(i)) } let result = string.join(parts, "")
-
Inefficient Data Access
// Problem: Linear search in arrays let found = false for item in large_array { if item == target { found = true break } } // Solution: Use dictionaries for O(1) lookup let lookup = {} for item in large_array { lookup[item] = true } let found = target in lookup
-
Unnecessary Function Calls
// Problem: Function calls in loops for i in range(1000) { let result = expensive_function(i) } // Solution: Cache results when possible let cache = {} for i in range(1000) { if i not in cache { cache[i] = expensive_function(i) } let result = cache[i] }
Performance Debugging
# Enable debug mode for performance analysis
python -m sona your_app.sona --debug --performance
# Use the experimental type-aware interpreter for additional insights
python -c "
from sona.type_aware_interpreter import TypeAwareSonaInterpreter
interpreter = TypeAwareSonaInterpreter(enable_type_optimizations=True)
# ... run your code ...
print(interpreter.get_type_statistics())
"
π Getting Help
If you encounter performance issues:
- Check the basics: Ensure you're running Sona v0.7.1
- Run benchmarks: Use
performance_baseline_fixed.py
to verify your installation - Profile your code: Identify bottlenecks before optimizing
- Join the community: Share performance questions in our GitHub discussions
Remember: The goal is to write clear, maintainable code first, then optimize based on actual performance measurements.
This guide will be updated as new performance features are added to Sona. Check back for the latest optimization techniques and benchmarking tools.