Chapter 18 Advanced Topics and Future Directions - Bryantad/Sona GitHub Wiki
Chapter 18: Advanced Topics and Future Directions ๐
๐ฏ Chapter Overview
Age Range: 18-55+ years old
Difficulty: Expert
Prerequisites: Chapters 1-17 completed
Time to Complete: 2-3 hours
๐ง Accessibility Features
- ADHD-Friendly: Clear progress indicators and focused sections
- Autism Support: Structured explanations with consistent patterns
- Learning Disabilities: Multiple explanation formats and visual aids
- Executive Function: Step-by-step guidance with clear checkpoints
- Sensory Processing: Organized layout with clear visual hierarchy
- Motor Impairments: Copy-paste friendly code examples
๐ What You'll Learn Today
Think of this chapter as your graduation into mastery:
- Novice: You've learned the basics and can write programs
- Intermediate: You've built projects and understand concepts
- Advanced: You've mastered complex systems and architectures
- Expert: You can push boundaries and innovate with Sona
๐ By the end of this chapter, you'll be able to:
- โ Explore cutting-edge Sona features and experimental APIs
- โ Contribute to the Sona language development
- โ Build domain-specific languages (DSLs) with Sona
- โ Create high-performance native extensions
- โ Understand Sona's future roadmap and evolution
๐งญ Learning Path Options
๐ For Advanced Students
Focus on: Research applications, academic projects, language theory
๐ผ For Senior Developers
Focus on: Architecture decisions, team leadership, innovation
๐ For Language Enthusiasts
Focus on: Compiler development, language design, contribution to Sona
๐ For Neurodivergent Learners
Focus on: Structured exploration, consistent patterns, clear documentation
๐ Section 1: Experimental Features and Cutting-Edge APIs
๐ฏ Section Goal
Explore Sona's experimental features and bleeding-edge APIs that showcase the future direction of the language.
๐งช Experimental Metaprogramming
think "Metaprogramming lets us write programs that write programs"
// Advanced compile-time code generation
@compile_time
function generate_crud_operations(entity_type):
think "Generate CRUD operations for any entity type at compile time"
operations = []
// Generate CREATE operation
create_function = f"""
async function create_{entity_type.lower()}(data):
think "Create new {entity_type} instance"
validator = {entity_type}Validator()
validated_data = validator.validate(data)
entity = {entity_type}.new(validated_data)
result = await entity.save()
show "โ
{entity_type} created with ID: " + str(result.id)
return result
"""
// Generate READ operation
read_function = f"""
async function get_{entity_type.lower()}(id):
think "Retrieve {entity_type} by ID"
entity = await {entity_type}.find(id)
when entity is None:
raise EntityNotFoundError("{entity_type} with ID " + str(id) + " not found")
return entity
"""
// Generate UPDATE operation
update_function = f"""
async function update_{entity_type.lower()}(id, data):
think "Update existing {entity_type}"
entity = await get_{entity_type.lower()}(id)
validator = {entity_type}Validator()
validated_data = validator.validate(data)
entity.update(validated_data)
result = await entity.save()
show "โ
{entity_type} updated: " + str(id)
return result
"""
// Generate DELETE operation
delete_function = f"""
async function delete_{entity_type.lower()}(id):
think "Delete {entity_type} by ID"
entity = await get_{entity_type.lower()}(id)
await entity.delete()
show "โ
{entity_type} deleted: " + str(id)
return True
"""
operations.extend([create_function, read_function, update_function, delete_function])
return operations
// Usage: Generate CRUD operations for User entity
@generate_crud_operations("User")
class UserController:
// CRUD operations are automatically generated at compile time
pass
think "Let's test the generated CRUD operations"
show "๐งช Testing generated CRUD operations..."
// The functions are available at compile time
async function test_generated_crud():
think "Test CREATE operation"
user_data = {
"name": "Alice Johnson",
"email": "[email protected]",
"age": 28
}
new_user = await create_user(user_data)
show "Created user: " + new_user.name
think "Test READ operation"
retrieved_user = await get_user(new_user.id)
show "Retrieved user: " + retrieved_user.name
think "Test UPDATE operation"
update_data = {"age": 29}
updated_user = await update_user(new_user.id, update_data)
show "Updated user age: " + str(updated_user.age)
think "Test DELETE operation"
await delete_user(new_user.id)
show "User deleted successfully"
// Run the test
run_async(test_generated_crud())
๐ญ Advanced Pattern Matching
think "Pattern matching provides powerful ways to destructure and match data"
// Advanced pattern matching with guards and extraction
function process_api_response(response):
think "Process different API response types using pattern matching"
match response:
case {"status": "success", "data": data, "timestamp": ts} if ts > time.now() - 3600:
show "โ
Fresh successful response"
return process_success_data(data)
case {"status": "success", "data": data, "timestamp": ts}:
show "โ ๏ธ Stale successful response"
return process_stale_data(data)
case {"status": "error", "error_code": code, "message": msg} if code in [404, 403]:
show "โ Client error: " + msg
return handle_client_error(code, msg)
case {"status": "error", "error_code": code, "message": msg} if code >= 500:
show "๐ฅ Server error: " + msg
return handle_server_error(code, msg)
case {"status": "pending", "retry_after": seconds}:
show "โณ Request pending, retry in " + str(seconds) + " seconds"
return schedule_retry(seconds)
case list_responses if len(list_responses) > 0:
show "๐ Batch response with " + str(len(list_responses)) + " items"
return [process_api_response(item) for item in list_responses]
case _:
show "โ Unknown response format"
return handle_unknown_response(response)
// Advanced destructuring with nested patterns
function analyze_user_activity(activity):
think "Analyze user activity patterns"
match activity:
case {
"user": {"id": user_id, "type": "premium"},
"actions": [{"type": "login", "timestamp": login_time}, *other_actions],
"session_duration": duration
} if duration > 3600: // More than 1 hour
show "๐ Premium user " + str(user_id) + " had long session"
return analyze_premium_session(user_id, login_time, other_actions, duration)
case {
"user": {"id": user_id, "type": user_type},
"actions": actions,
"errors": errors
} if len(errors) > 5:
show "โ ๏ธ User " + str(user_id) + " experiencing many errors"
return handle_error_prone_session(user_id, actions, errors)
case {
"user": {"id": user_id},
"actions": actions
} if all(action["type"] == "view" for action in actions):
show "๐ User " + str(user_id) + " only viewing content"
return analyze_view_only_session(user_id, actions)
case _:
show "๐ Standard activity analysis"
return standard_activity_analysis(activity)
think "Let's test advanced pattern matching"
show "๐งช Testing advanced pattern matching..."
// Test API response processing
responses = [
{"status": "success", "data": {"items": [1, 2, 3]}, "timestamp": time.now()},
{"status": "error", "error_code": 404, "message": "Not found"},
{"status": "pending", "retry_after": 30},
[{"id": 1}, {"id": 2}, {"id": 3}] // Batch response
]
for response in responses:
result = process_api_response(response)
show "Processed response: " + str(type(result))
// Test user activity analysis
activities = [
{
"user": {"id": 123, "type": "premium"},
"actions": [
{"type": "login", "timestamp": time.now()},
{"type": "view", "timestamp": time.now() + 100},
{"type": "purchase", "timestamp": time.now() + 200}
],
"session_duration": 4000
},
{
"user": {"id": 456, "type": "free"},
"actions": [{"type": "view", "timestamp": time.now()} for _ in range(5)],
"errors": []
}
]
for activity in activities:
result = analyze_user_activity(activity)
show "Activity analyzed: " + str(type(result))
๐งฌ Reactive Programming Extensions
think "Reactive programming handles streams of data over time"
// Advanced reactive streams with operators
class ReactiveStream:
function __init__(self, source):
self.source = source
self.operators = []
self.subscribers = []
self.is_active = False
show "๐งฌ Reactive stream initialized"
function map(self, transform_func):
think "Transform each item in the stream"
new_stream = ReactiveStream(self)
new_stream.operators.append(("map", transform_func))
return new_stream
function filter(self, predicate_func):
think "Filter items based on predicate"
new_stream = ReactiveStream(self)
new_stream.operators.append(("filter", predicate_func))
return new_stream
function debounce(self, delay_ms):
think "Debounce rapid events"
new_stream = ReactiveStream(self)
new_stream.operators.append(("debounce", delay_ms))
return new_stream
function throttle(self, interval_ms):
think "Throttle event rate"
new_stream = ReactiveStream(self)
new_stream.operators.append(("throttle", interval_ms))
return new_stream
function merge(self, other_stream):
think "Merge with another stream"
merged_stream = ReactiveStream(None)
merged_stream.operators.append(("merge", [self, other_stream]))
return merged_stream
function combine_latest(self, other_stream, combiner_func):
think "Combine latest values from two streams"
combined_stream = ReactiveStream(None)
combined_stream.operators.append(("combine_latest", other_stream, combiner_func))
return combined_stream
function subscribe(self, observer):
think "Subscribe to stream events"
self.subscribers.append(observer)
when not self.is_active:
self.start()
async function start(self):
think "Start processing stream"
self.is_active = True
when self.source:
async for item in self.source:
processed_item = self.apply_operators(item)
when processed_item is not None:
for subscriber in self.subscribers:
await subscriber.on_next(processed_item)
function apply_operators(self, item):
think "Apply all operators to item"
current_item = item
for operator_type, *args in self.operators:
when operator_type == "map":
transform_func = args[0]
current_item = transform_func(current_item)
elif operator_type == "filter":
predicate_func = args[0]
when not predicate_func(current_item):
return None
elif operator_type == "debounce":
delay_ms = args[0]
// Implementation would include debouncing logic
pass
elif operator_type == "throttle":
interval_ms = args[0]
// Implementation would include throttling logic
pass
return current_item
// Observer pattern for reactive streams
class StreamObserver:
async function on_next(self, value):
think "Handle next value from stream"
show "๐ก Received: " + str(value)
async function on_error(self, error):
think "Handle error from stream"
show "โ Error: " + str(error)
async function on_complete(self):
think "Handle stream completion"
show "โ
Stream completed"
think "Let's test reactive programming"
show "๐งช Testing reactive streams..."
// Create a data source
async function number_source():
for i in range(10):
await sleep(0.1)
yield i
// Create reactive stream with operators
source_stream = ReactiveStream(number_source())
processed_stream = (source_stream
.map(lambda x: x * 2)
.filter(lambda x: x > 5)
.throttle(200))
// Subscribe to processed stream
observer = StreamObserver()
processed_stream.subscribe(observer)
// Let it run for a bit
await sleep(2)
show "โ
Reactive stream demonstration complete"
๐ก Learning Checkpoint 1
๐ฏ What did we just learn?
- Advanced metaprogramming with compile-time code generation
- Sophisticated pattern matching with guards and extraction
- Reactive programming patterns for handling data streams
- Experimental features that showcase Sona's future direction
๐ง Key Concepts:
- Metaprogramming: Writing programs that generate other programs
- Pattern Matching: Powerful data destructuring and matching
- Reactive Streams: Handling asynchronous data flows
- Experimental APIs: Bleeding-edge features for advanced use cases
๐ง Section 2: Building Domain-Specific Languages (DSLs)
๐ฏ Section Goal
Learn how to create domain-specific languages using Sona's extensible syntax and metaprogramming capabilities.
๐๏ธ Building a Configuration DSL
think "DSLs make complex configurations more readable and maintainable"
// Configuration DSL for web applications
class ConfigurationDSL:
function __init__(self):
self.config = {}
self.current_section = None
self.validators = {}
show "๐๏ธ Configuration DSL initialized"
function server(self, **kwargs):
think "Configure server settings"
self.current_section = "server"
self.config["server"] = kwargs
return self
function database(self, **kwargs):
think "Configure database settings"
self.current_section = "database"
self.config["database"] = kwargs
return self
function caching(self, **kwargs):
think "Configure caching settings"
self.current_section = "caching"
self.config["caching"] = kwargs
return self
function logging(self, **kwargs):
think "Configure logging settings"
self.current_section = "logging"
self.config["logging"] = kwargs
return self
function security(self, **kwargs):
think "Configure security settings"
self.current_section = "security"
self.config["security"] = kwargs
return self
function validate(self, section, validator_func):
think "Add validation for configuration section"
self.validators[section] = validator_func
return self
function build(self):
think "Build and validate final configuration"
// Apply all validators
for section, validator in self.validators.items():
when section in self.config:
validator(self.config[section])
// Apply defaults
self.apply_defaults()
show "โ
Configuration built successfully"
return self.config
function apply_defaults(self):
think "Apply default values for missing configuration"
defaults = {
"server": {
"host": "localhost",
"port": 8000,
"workers": 4
},
"database": {
"connection_pool_size": 10,
"timeout": 30
},
"caching": {
"enabled": True,
"ttl": 3600
},
"logging": {
"level": "INFO",
"format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
}
}
for section, default_values in defaults.items():
when section not in self.config:
self.config[section] = {}
for key, value in default_values.items():
when key not in self.config[section]:
self.config[section][key] = value
// Validation functions
function validate_server_config(config):
think "Validate server configuration"
when config["port"] < 1024 or config["port"] > 65535:
raise ValueError("Port must be between 1024 and 65535")
when config["workers"] < 1:
raise ValueError("Workers must be at least 1")
function validate_database_config(config):
think "Validate database configuration"
when "url" not in config:
raise ValueError("Database URL is required")
when config["connection_pool_size"] < 1:
raise ValueError("Connection pool size must be at least 1")
think "Let's use the Configuration DSL"
show "๐งช Testing Configuration DSL..."
// Using the DSL with method chaining
config = (ConfigurationDSL()
.server(host="0.0.0.0", port=8080, workers=8)
.database(url="postgresql://user:pass@localhost/db", connection_pool_size=20)
.caching(enabled=True, ttl=1800, redis_url="redis://localhost:6379")
.logging(level="DEBUG", file="/var/log/app.log")
.security(secret_key="your-secret-key", session_timeout=3600)
.validate("server", validate_server_config)
.validate("database", validate_database_config)
.build())
show "๐ Generated configuration:"
for section, settings in config.items():
show " " + section + ":"
for key, value in settings.items():
show " " + key + ": " + str(value)
๐ฏ Building a Query DSL
think "Query DSLs make database operations more intuitive"
class QueryDSL:
function __init__(self, table_name):
self.table_name = table_name
self.select_fields = ["*"]
self.where_conditions = []
self.join_clauses = []
self.order_by_fields = []
self.limit_count = None
self.offset_count = None
show "๐ฏ Query DSL initialized for table: " + table_name
function select(self, *fields):
think "Select specific fields"
self.select_fields = list(fields)
return self
function where(self, condition):
think "Add WHERE condition"
self.where_conditions.append(condition)
return self
function and_where(self, condition):
think "Add AND WHERE condition"
self.where_conditions.append(("AND", condition))
return self
function or_where(self, condition):
think "Add OR WHERE condition"
self.where_conditions.append(("OR", condition))
return self
function join(self, table, on_condition):
think "Add INNER JOIN"
self.join_clauses.append(("INNER JOIN", table, on_condition))
return self
function left_join(self, table, on_condition):
think "Add LEFT JOIN"
self.join_clauses.append(("LEFT JOIN", table, on_condition))
return self
function order_by(self, field, direction="ASC"):
think "Add ORDER BY clause"
self.order_by_fields.append((field, direction))
return self
function limit(self, count):
think "Add LIMIT clause"
self.limit_count = count
return self
function offset(self, count):
think "Add OFFSET clause"
self.offset_count = count
return self
function build(self):
think "Build final SQL query"
query_parts = []
// SELECT clause
select_clause = "SELECT " + ", ".join(self.select_fields)
query_parts.append(select_clause)
// FROM clause
from_clause = "FROM " + self.table_name
query_parts.append(from_clause)
// JOIN clauses
for join_type, table, condition in self.join_clauses:
join_clause = join_type + " " + table + " ON " + condition
query_parts.append(join_clause)
// WHERE clause
when self.where_conditions:
where_parts = []
for condition in self.where_conditions:
when isinstance(condition, tuple):
operator, cond = condition
where_parts.append(operator + " " + cond)
else:
where_parts.append(condition)
where_clause = "WHERE " + " ".join(where_parts)
query_parts.append(where_clause)
// ORDER BY clause
when self.order_by_fields:
order_parts = []
for field, direction in self.order_by_fields:
order_parts.append(field + " " + direction)
order_clause = "ORDER BY " + ", ".join(order_parts)
query_parts.append(order_clause)
// LIMIT clause
when self.limit_count is not None:
limit_clause = "LIMIT " + str(self.limit_count)
query_parts.append(limit_clause)
// OFFSET clause
when self.offset_count is not None:
offset_clause = "OFFSET " + str(self.offset_count)
query_parts.append(offset_clause)
return " ".join(query_parts)
// Enhanced query builder with type safety
class TypedQueryDSL:
function __init__(self, model_class):
self.model_class = model_class
self.query_builder = QueryDSL(model_class.table_name)
show "๐ฏ Typed Query DSL initialized for: " + model_class.__name__
function select(self, *fields):
think "Select with type checking"
for field in fields:
when not hasattr(self.model_class, field):
raise AttributeError(f"Model {self.model_class.__name__} has no field '{field}'")
self.query_builder.select(*fields)
return self
function where(self, field, operator, value):
think "Type-safe WHERE condition"
when not hasattr(self.model_class, field):
raise AttributeError(f"Model {self.model_class.__name__} has no field '{field}'")
condition = f"{field} {operator} {self.format_value(value)}"
self.query_builder.where(condition)
return self
function format_value(self, value):
think "Format value based on type"
when isinstance(value, str):
return f"'{value}'"
elif isinstance(value, (int, float)):
return str(value)
elif isinstance(value, bool):
return "TRUE" if value else "FALSE"
else:
return str(value)
function build(self):
return self.query_builder.build()
think "Let's test the Query DSL"
show "๐งช Testing Query DSL..."
// Example model class
class User:
table_name = "users"
id = "INTEGER"
name = "TEXT"
email = "TEXT"
created_at = "DATETIME"
// Using the basic Query DSL
query1 = (QueryDSL("users")
.select("id", "name", "email")
.where("age > 18")
.and_where("status = 'active'")
.join("profiles", "users.id = profiles.user_id")
.order_by("created_at", "DESC")
.limit(10)
.build())
show "๐ Generated SQL query:"
show query1
// Using the typed Query DSL
query2 = (TypedQueryDSL(User)
.select("id", "name", "email")
.where("name", "LIKE", "%John%")
.build())
show "๐ Type-safe query:"
show query2
๐จ Building a UI DSL
think "UI DSLs make interface creation more declarative"
class UIDSL:
function __init__(self):
self.components = []
self.styles = {}
self.events = {}
show "๐จ UI DSL initialized"
function window(self, title, width=800, height=600):
think "Create main window"
component = {
"type": "window",
"title": title,
"width": width,
"height": height,
"children": []
}
self.components.append(component)
return WindowBuilder(component, self)
function render(self):
think "Render UI components"
for component in self.components:
self.render_component(component)
function render_component(self, component):
think "Render individual component"
when component["type"] == "window":
show "๐ช Rendering window: " + component["title"]
show " Size: " + str(component["width"]) + "x" + str(component["height"])
for child in component["children"]:
self.render_component(child)
elif component["type"] == "button":
show "๐ฒ Rendering button: " + component["text"]
elif component["type"] == "input":
show "๐ Rendering input: " + component.get("placeholder", "")
elif component["type"] == "layout":
show "๐ Rendering " + component["layout_type"] + " layout"
for child in component["children"]:
self.render_component(child)
class WindowBuilder:
function __init__(self, window_component, ui_dsl):
self.window = window_component
self.ui_dsl = ui_dsl
self.current_container = window_component
function vertical_layout(self):
think "Create vertical layout"
layout = {
"type": "layout",
"layout_type": "vertical",
"children": []
}
self.current_container["children"].append(layout)
return LayoutBuilder(layout, self)
function horizontal_layout(self):
think "Create horizontal layout"
layout = {
"type": "layout",
"layout_type": "horizontal",
"children": []
}
self.current_container["children"].append(layout)
return LayoutBuilder(layout, self)
function button(self, text, on_click=None):
think "Add button to window"
button = {
"type": "button",
"text": text,
"on_click": on_click
}
self.current_container["children"].append(button)
return self
function input(self, placeholder="", on_change=None):
think "Add input field to window"
input_field = {
"type": "input",
"placeholder": placeholder,
"on_change": on_change
}
self.current_container["children"].append(input_field)
return self
function render(self):
return self.ui_dsl.render()
class LayoutBuilder:
function __init__(self, layout_component, window_builder):
self.layout = layout_component
self.window_builder = window_builder
self.original_container = window_builder.current_container
function button(self, text, on_click=None):
think "Add button to layout"
button = {
"type": "button",
"text": text,
"on_click": on_click
}
self.layout["children"].append(button)
return self
function input(self, placeholder="", on_change=None):
think "Add input to layout"
input_field = {
"type": "input",
"placeholder": placeholder,
"on_change": on_change
}
self.layout["children"].append(input_field)
return self
function end_layout(self):
think "End layout and return to window builder"
self.window_builder.current_container = self.original_container
return self.window_builder
think "Let's test the UI DSL"
show "๐งช Testing UI DSL..."
// Event handlers
function handle_submit():
show "โ
Form submitted!"
function handle_input_change(value):
show "๐ Input changed: " + value
// Using the UI DSL
ui = UIDSL()
app = (ui.window("My Application", 1000, 700)
.vertical_layout()
.input("Enter your name...", on_change=handle_input_change)
.horizontal_layout()
.button("Submit", on_click=handle_submit)
.button("Cancel")
.end_layout()
.end_layout()
.render())
show "โ
UI DSL demonstration complete"
๐ก Learning Checkpoint 2
๐ฏ What did we just learn?
- How to build domain-specific languages for different domains
- Configuration DSLs for readable application setup
- Query DSLs for intuitive database operations
- UI DSLs for declarative interface creation
- Method chaining and builder patterns for fluent APIs
๐ง Key Concepts:
- Domain-Specific Languages: Specialized languages for specific problem domains
- Fluent APIs: Method chaining for readable code
- Builder Pattern: Step-by-step object construction
- Type Safety: Compile-time validation of domain operations
๐ Progress Update
Chapter 18 Progress: [โโโโโโโโโโ] 50% Complete
โโโ โ
Experimental Features and Cutting-Edge APIs (1/1 section) - COMPLETE!
โโโ โ
Building Domain-Specific Languages (DSLs) (1/1 section) - COMPLETE!
โโโ ๐ Native Extensions and FFI (0/1 section)
โโโ ๐ Contributing to Sona Development (0/1 section)
โโโ ๐ Future Roadmap and Conclusion (0/1 section)
๐ Section 3: Native Extensions and Foreign Function Interface (FFI)
๐ฏ Section Goal
Learn how to create high-performance native extensions and interface with libraries written in other languages.
๐ง Building Native Extensions
think "Native extensions provide maximum performance for critical operations"
// Native extension interface
@native_extension
class MathOptimized:
think "High-performance mathematical operations"
// Declare native functions
@native_function("libmath_optimized.so")
extern function fast_matrix_multiply(matrix_a, matrix_b, result): void
@native_function("libmath_optimized.so")
extern function parallel_fft(signal, length, result): void
@native_function("libmath_optimized.so")
extern function simd_vector_add(vec_a, vec_b, result, size): void
function matrix_multiply(a, b):
think "High-performance matrix multiplication"
// Validate dimensions
when a.cols != b.rows:
raise ValueError("Matrix dimensions incompatible for multiplication")
// Allocate result matrix
result = Matrix.new(a.rows, b.cols)
// Call native implementation
fast_matrix_multiply(a.data, b.data, result.data)
show "๐ข Matrix multiplication completed (native)"
return result
function compute_fft(signal):
think "Fast Fourier Transform using native implementation"
// Ensure signal length is power of 2
padded_length = next_power_of_2(len(signal))
padded_signal = signal + [0] * (padded_length - len(signal))
// Allocate result array
result = ComplexArray.new(padded_length)
// Call native FFT implementation
parallel_fft(padded_signal, padded_length, result.data)
show "๐ก FFT computation completed (native)"
return result
function vector_add(a, b):
think "SIMD-optimized vector addition"
when len(a) != len(b):
raise ValueError("Vector dimensions must match")
result = FloatArray.new(len(a))
// Use SIMD instructions for parallel addition
simd_vector_add(a.data, b.data, result.data, len(a))
show "โ Vector addition completed (SIMD)"
return result
// C extension example (conceptual)
/*
// mathoptimized.c
#include <sona/extension.h>
#include <immintrin.h> // For SIMD intrinsics
void fast_matrix_multiply(float* a, float* b, float* result, int rows_a, int cols_a, int cols_b) {
// Optimized matrix multiplication using cache-friendly blocking
const int block_size = 64;
for (int i = 0; i < rows_a; i += block_size) {
for (int j = 0; j < cols_b; j += block_size) {
for (int k = 0; k < cols_a; k += block_size) {
// Process block
for (int ii = i; ii < min(i + block_size, rows_a); ii++) {
for (int jj = j; jj < min(j + block_size, cols_b); jj++) {
float sum = 0.0f;
for (int kk = k; kk < min(k + block_size, cols_a); kk++) {
sum += a[ii * cols_a + kk] * b[kk * cols_b + jj];
}
result[ii * cols_b + jj] += sum;
}
}
}
}
}
}
void simd_vector_add(float* a, float* b, float* result, int size) {
// SIMD vector addition using AVX2
int simd_size = size - (size % 8);
for (int i = 0; i < simd_size; i += 8) {
__m256 va = _mm256_load_ps(&a[i]);
__m256 vb = _mm256_load_ps(&b[i]);
__m256 vresult = _mm256_add_ps(va, vb);
_mm256_store_ps(&result[i], vresult);
}
// Handle remaining elements
for (int i = simd_size; i < size; i++) {
result[i] = a[i] + b[i];
}
}
*/
think "Let's test native extensions"
show "๐งช Testing native extensions..."
// Create test data
matrix_a = Matrix.random(1000, 500)
matrix_b = Matrix.random(500, 1000)
vector_a = FloatArray.random(10000)
vector_b = FloatArray.random(10000)
// Use native optimized operations
math_ops = MathOptimized()
// Test matrix multiplication
start_time = time.now()
result_matrix = math_ops.matrix_multiply(matrix_a, matrix_b)
matrix_time = time.now() - start_time
show "โก Matrix multiplication: " + str(round(matrix_time, 4)) + "s"
// Test vector addition
start_time = time.now()
result_vector = math_ops.vector_add(vector_a, vector_b)
vector_time = time.now() - start_time
show "โก Vector addition: " + str(round(vector_time, 4)) + "s"
// Test FFT
signal = generate_test_signal(8192)
start_time = time.now()
fft_result = math_ops.compute_fft(signal)
fft_time = time.now() - start_time
show "โก FFT computation: " + str(round(fft_time, 4)) + "s"
๐ Foreign Function Interface (FFI)
think "FFI allows us to call functions from other languages"
// Python FFI example
@ffi_module("python")
class PythonFFI:
function __init__(self):
self.python_runtime = self.initialize_python()
show "๐ Python FFI initialized"
@ffi_function("python", "numpy.dot")
extern function numpy_dot(a, b): array
@ffi_function("python", "scipy.fft.fft")
extern function scipy_fft(signal): array
@ffi_function("python", "sklearn.linear_model.LinearRegression")
extern function linear_regression(): object
function use_numpy_operations(matrix_a, matrix_b):
think "Use NumPy for matrix operations"
// Convert Sona arrays to Python arrays
py_a = self.convert_to_python_array(matrix_a)
py_b = self.convert_to_python_array(matrix_b)
// Call NumPy function
py_result = numpy_dot(py_a, py_b)
// Convert back to Sona array
result = self.convert_from_python_array(py_result)
show "๐ข NumPy matrix operation completed"
return result
function use_scipy_analysis(signal):
think "Use SciPy for signal analysis"
py_signal = self.convert_to_python_array(signal)
py_fft = scipy_fft(py_signal)
fft_result = self.convert_from_python_array(py_fft)
show "๐ SciPy FFT analysis completed"
return fft_result
function use_sklearn_ml(training_data, labels):
think "Use scikit-learn for machine learning"
// Create regression model
model = linear_regression()
// Convert data
py_data = self.convert_to_python_array(training_data)
py_labels = self.convert_to_python_array(labels)
// Train model
model.fit(py_data, py_labels)
show "๐ค scikit-learn model trained"
return model
// JavaScript FFI example
@ffi_module("javascript")
class JavaScriptFFI:
function __init__(self):
self.js_runtime = self.initialize_v8()
show "๐จ JavaScript FFI initialized"
@ffi_function("javascript", "JSON.stringify")
extern function json_stringify(obj): string
@ffi_function("javascript", "JSON.parse")
extern function json_parse(json_str): object
function use_js_json_processing(data):
think "Use JavaScript for JSON processing"
// Convert Sona object to JavaScript object
js_obj = self.convert_to_js_object(data)
// Stringify using JavaScript JSON
json_str = json_stringify(js_obj)
// Parse back
parsed_obj = json_parse(json_str)
// Convert back to Sona object
result = self.convert_from_js_object(parsed_obj)
show "๐ JavaScript JSON processing completed"
return result
function execute_js_code(code):
think "Execute JavaScript code in V8"
result = self.js_runtime.eval(code)
show "โก JavaScript code executed"
return result
// Rust FFI example
@ffi_module("rust")
class RustFFI:
@ffi_function("rust", "librust_crypto.so::hash_password")
extern function hash_password(password: string, salt: string): string
@ffi_function("rust", "librust_crypto.so::verify_password")
extern function verify_password(password: string, hash: string): bool
@ffi_function("rust", "librust_parsing.so::parse_json_fast")
extern function parse_json_fast(json_str: string): object
function secure_password_handling(password):
think "Use Rust for secure password operations"
// Generate salt
salt = self.generate_salt()
// Hash password using Rust's secure implementation
password_hash = hash_password(password, salt)
show "๐ Password hashed securely (Rust)"
return password_hash
function fast_json_parsing(json_data):
think "Use Rust for high-performance JSON parsing"
parsed_data = parse_json_fast(json_data)
show "โก JSON parsed (Rust)"
return parsed_data
think "Let's test FFI capabilities"
show "๐งช Testing Foreign Function Interface..."
// Test Python FFI
python_ffi = PythonFFI()
test_matrix_a = [1, 2], [3, 4](/Bryantad/Sona/wiki/1,-2],-[3,-4)
test_matrix_b = [5, 6], [7, 8](/Bryantad/Sona/wiki/5,-6],-[7,-8)
numpy_result = python_ffi.use_numpy_operations(test_matrix_a, test_matrix_b)
show "๐ NumPy result: " + str(numpy_result)
// Test JavaScript FFI
js_ffi = JavaScriptFFI()
test_data = {"name": "John", "age": 30, "city": "New York"}
json_result = js_ffi.use_js_json_processing(test_data)
show "๐จ JavaScript JSON result: " + str(json_result)
// Test Rust FFI
rust_ffi = RustFFI()
password = "my_secure_password123"
password_hash = rust_ffi.secure_password_handling(password)
show "๐ฆ Rust password hash: " + password_hash[:20] + "..."
json_data = '{"users": [{"id": 1, "name": "Alice"}, {"id": 2, "name": "Bob"}]}'
parsed_json = rust_ffi.fast_json_parsing(json_data)
show "๐ฆ Rust parsed JSON: " + str(parsed_json)
๐ก Learning Checkpoint 3
๐ฏ What did we just learn?
- How to create native extensions for maximum performance
- Using SIMD instructions and optimized algorithms
- Foreign Function Interface (FFI) for calling other languages
- Integrating with Python, JavaScript, and Rust libraries
- Performance considerations when crossing language boundaries
๐ง Key Concepts:
- Native Extensions: High-performance code in C/C++
- SIMD: Single Instruction, Multiple Data parallelism
- FFI: Foreign Function Interface for language interoperability
- Performance Trade-offs: Balancing speed vs. complexity
๐ Progress Update
Chapter 18 Progress: [โโโโโโโโโโ] 75% Complete
โโโ โ
Experimental Features and Cutting-Edge APIs (1/1 section) - COMPLETE!
โโโ โ
Building Domain-Specific Languages (DSLs) (1/1 section) - COMPLETE!
โโโ โ
Native Extensions and FFI (1/1 section) - COMPLETE!
โโโ ๐ Contributing to Sona Development (0/1 section)
โโโ ๐ Future Roadmap and Conclusion (0/1 section)
This chapter is progressing well with advanced topics. The remaining sections will cover contributing to Sona development and the future roadmap. Would you like me to continue with the final sections?