Chapter 16 Portfolio Project Data Analysis Tool - Bryantad/Sona GitHub Wiki

Chapter 16: Portfolio Project – Building a Professional Data Analysis Tool

Overview

In this chapter, we'll build DataInsight Pro, a comprehensive data analysis tool that showcases Sona's capabilities for handling real-world data processing tasks. This project will demonstrate professional-grade data handling, statistical operations, and data visualization techniques.

Learning Objectives

  • Design and implement a production-ready data analysis application
  • Apply statistical operations and data processing in Sona
  • Create interactive data visualizations
  • Implement professional data handling patterns and best practices
  • Build an intuitive user interface for data analysis workflows

Project: DataInsight Pro

Section 1: Project Setup and Architecture

# DataInsightPro.sona
# A professional data analysis tool demonstrating Sona's capabilities

# Import core modules
import Statistics from 'sona.math'
import DataFrames from 'sona.data'
import Visualization from 'sona.viz'
import GUI from 'sona.ui'

class DataInsightPro:
    constructor():
        self.dataFrame = null
        self.statistics = Statistics.new()
        self.visualizer = Visualization.new()
        self.gui = GUI.new()

    def loadData(filepath: string) -> DataFrames:
        # Support multiple file formats
        self.dataFrame = match filepath.extension:
            case '.csv': DataFrames.loadCSV(filepath)
            case '.json': DataFrames.loadJSON(filepath)
            case '.xlsx': DataFrames.loadExcel(filepath)
            default: raise Error("Unsupported file format")

        return self.dataFrame

Section 2: Statistical Analysis Engine

# StatisticalAnalysis.sona
class StatisticalAnalysis:
    def computeBasicStats(data: DataFrames) -> Dictionary:
        return {
            'mean': data.mean(),
            'median': data.median(),
            'std': data.standardDeviation(),
            'variance': data.variance(),
            'skewness': data.skewness(),
            'kurtosis': data.kurtosis()
        }

    def performHypothesisTest(data1: Array, data2: Array, testType: string) -> Dictionary:
        result = match testType:
            case 'ttest': Statistics.tTest(data1, data2)
            case 'anova': Statistics.ANOVA(data1, data2)
            case 'chi_square': Statistics.chiSquare(data1, data2)
            default: raise Error("Unsupported test type")

        return {
            'statistic': result.statistic,
            'pValue': result.pValue,
            'significance': result.pValue < 0.05
        }

Section 3: Data Visualization Module

# DataVisualization.sona
class DataVisualization:
    constructor(theme: string = 'modern'):
        self.theme = theme
        self.plotEngine = Visualization.createEngine(theme)

    def createPlot(data: DataFrames, plotType: string) -> Plot:
        plot = match plotType:
            case 'scatter':
                self.plotEngine.scatter(data.x, data.y)
                    .withTitle("Scatter Plot")
                    .withAxis("X Axis", "Y Axis")
            case 'histogram':
                self.plotEngine.histogram(data)
                    .withBins(30)
                    .withDensity(true)
            case 'boxplot':
                self.plotEngine.boxplot(data)
                    .withOutliers(true)
                    .withNotch(true)
            default:
                raise Error("Unsupported plot type")

        return plot.withTheme(self.theme)

Section 4: User Interface Implementation

# UserInterface.sona
class DataAnalysisUI:
    constructor():
        self.window = GUI.createWindow("DataInsight Pro")
        self.setupMenuBar()
        self.setupWorkspace()

    def setupMenuBar():
        menu = GUI.MenuBar.new()
        menu.addItem("File")
            .withSubMenu([
                "Open Dataset",
                "Save Analysis",
                "Export Results"
            ])
        menu.addItem("Analysis")
            .withSubMenu([
                "Basic Statistics",
                "Hypothesis Tests",
                "Regression Analysis"
            ])
        menu.addItem("Visualization")
            .withSubMenu([
                "Scatter Plot",
                "Histogram",
                "Box Plot",
                "Heat Map"
            ])

    def setupWorkspace():
        # Create main workspace layout
        self.workspace = GUI.Grid.new()
            .addPanel("Data View", position: [0, 0])
            .addPanel("Statistics", position: [0, 1])
            .addPanel("Visualization", position: [1, 0:2])

Section 5: Data Processing and Analysis Workflows

# DataWorkflows.sona
class DataWorkflows:
    def processDataset(dataset: DataFrames) -> AnalysisResult:
        # Data cleaning and preprocessing
        cleanData = dataset
            .removeNulls()
            .normalizeColumns()
            .detectOutliers()

        # Feature engineering
        features = cleanData
            .createFeatures()
            .selectBestFeatures(method: 'correlation')

        # Perform analysis
        analysis = StatisticalAnalysis.new()
        results = analysis.computeBasicStats(features)

        # Generate visualizations
        viz = DataVisualization.new()
        plots = {
            'distribution': viz.createPlot(features, 'histogram'),
            'correlation': viz.createPlot(features, 'scatter')
        }

        return AnalysisResult.new(results, plots)

Hands-On Exercises

  1. Basic Data Analysis
    • Load a sample dataset
    • Calculate basic statistical measures
    • Create a visualization of the data distribution
# Exercise 1: Basic Data Analysis
def basicAnalysis():
    # Initialize DataInsight Pro
    tool = DataInsightPro.new()

    # Load sample dataset
    data = tool.loadData("sample_data.csv")

    # Compute basic statistics
    stats = tool.statistics.computeBasicStats(data)

    # Create visualization
    plot = tool.visualizer.createPlot(data, 'histogram')

    # Display results
    print("Basic Statistics:")
    print(stats)
    plot.show()
  1. Advanced Analysis Workflow
    • Implement a complete analysis pipeline
    • Handle data preprocessing
    • Generate multiple visualizations
    • Export analysis results
# Exercise 2: Advanced Analysis Workflow
def advancedAnalysis():
    workflow = DataWorkflows.new()

    # Load and process dataset
    dataset = DataFrames.loadCSV("complex_dataset.csv")
    results = workflow.processDataset(dataset)

    # Generate comprehensive report
    report = AnalysisReport.new()
        .addStatistics(results.statistics)
        .addVisualizations(results.plots)
        .addInsights(results.insights)

    # Export results
    report.exportPDF("analysis_report.pdf")

Best Practices and Professional Tips

  1. Data Quality Assurance

    • Always validate input data
    • Implement robust error handling
    • Document data transformations
  2. Performance Optimization

    • Use efficient data structures
    • Implement lazy loading for large datasets
    • Optimize memory usage in visualizations
  3. Code Organization

    • Follow clean architecture principles
    • Implement proper separation of concerns
    • Use meaningful naming conventions
  4. Testing and Validation

    • Write unit tests for critical functions
    • Validate statistical results
    • Test edge cases in data processing

Executive Function Support

  • Task Breakdown

    • Clear step-by-step implementation guide
    • Modular code structure
    • Visual progress indicators
  • Memory Aids

    • Code templates for common operations
    • Quick reference for statistical functions
    • Visual representation of data structures
  • Focus Support

    • Clearly labeled code sections
    • Consistent formatting
    • Progressive complexity in exercises

Next Steps and Resources

  1. Advanced Topics

    • Machine Learning Integration
    • Real-time Data Analysis
    • Custom Visualization Creation
  2. Additional Resources

    • Statistical Analysis Documentation
    • Data Visualization Gallery
    • Performance Optimization Guide
  3. Practice Projects

    • Market Data Analyzer
    • Scientific Data Processor
    • Social Media Trend Analyzer

This chapter has provided a comprehensive guide to building a professional data analysis tool using Sona. The project demonstrates advanced concepts while maintaining accessibility through clear structure and support features. In the next chapter, we'll explore building a desktop application with a focus on user experience and distribution.