Chapter 16 Portfolio Project Data Analysis Tool - Bryantad/Sona GitHub Wiki
Chapter 16: Portfolio Project – Building a Professional Data Analysis Tool
Overview
In this chapter, we'll build DataInsight Pro, a comprehensive data analysis tool that showcases Sona's capabilities for handling real-world data processing tasks. This project will demonstrate professional-grade data handling, statistical operations, and data visualization techniques.
Learning Objectives
- Design and implement a production-ready data analysis application
- Apply statistical operations and data processing in Sona
- Create interactive data visualizations
- Implement professional data handling patterns and best practices
- Build an intuitive user interface for data analysis workflows
Project: DataInsight Pro
Section 1: Project Setup and Architecture
# DataInsightPro.sona
# A professional data analysis tool demonstrating Sona's capabilities
# Import core modules
import Statistics from 'sona.math'
import DataFrames from 'sona.data'
import Visualization from 'sona.viz'
import GUI from 'sona.ui'
class DataInsightPro:
constructor():
self.dataFrame = null
self.statistics = Statistics.new()
self.visualizer = Visualization.new()
self.gui = GUI.new()
def loadData(filepath: string) -> DataFrames:
# Support multiple file formats
self.dataFrame = match filepath.extension:
case '.csv': DataFrames.loadCSV(filepath)
case '.json': DataFrames.loadJSON(filepath)
case '.xlsx': DataFrames.loadExcel(filepath)
default: raise Error("Unsupported file format")
return self.dataFrame
Section 2: Statistical Analysis Engine
# StatisticalAnalysis.sona
class StatisticalAnalysis:
def computeBasicStats(data: DataFrames) -> Dictionary:
return {
'mean': data.mean(),
'median': data.median(),
'std': data.standardDeviation(),
'variance': data.variance(),
'skewness': data.skewness(),
'kurtosis': data.kurtosis()
}
def performHypothesisTest(data1: Array, data2: Array, testType: string) -> Dictionary:
result = match testType:
case 'ttest': Statistics.tTest(data1, data2)
case 'anova': Statistics.ANOVA(data1, data2)
case 'chi_square': Statistics.chiSquare(data1, data2)
default: raise Error("Unsupported test type")
return {
'statistic': result.statistic,
'pValue': result.pValue,
'significance': result.pValue < 0.05
}
Section 3: Data Visualization Module
# DataVisualization.sona
class DataVisualization:
constructor(theme: string = 'modern'):
self.theme = theme
self.plotEngine = Visualization.createEngine(theme)
def createPlot(data: DataFrames, plotType: string) -> Plot:
plot = match plotType:
case 'scatter':
self.plotEngine.scatter(data.x, data.y)
.withTitle("Scatter Plot")
.withAxis("X Axis", "Y Axis")
case 'histogram':
self.plotEngine.histogram(data)
.withBins(30)
.withDensity(true)
case 'boxplot':
self.plotEngine.boxplot(data)
.withOutliers(true)
.withNotch(true)
default:
raise Error("Unsupported plot type")
return plot.withTheme(self.theme)
Section 4: User Interface Implementation
# UserInterface.sona
class DataAnalysisUI:
constructor():
self.window = GUI.createWindow("DataInsight Pro")
self.setupMenuBar()
self.setupWorkspace()
def setupMenuBar():
menu = GUI.MenuBar.new()
menu.addItem("File")
.withSubMenu([
"Open Dataset",
"Save Analysis",
"Export Results"
])
menu.addItem("Analysis")
.withSubMenu([
"Basic Statistics",
"Hypothesis Tests",
"Regression Analysis"
])
menu.addItem("Visualization")
.withSubMenu([
"Scatter Plot",
"Histogram",
"Box Plot",
"Heat Map"
])
def setupWorkspace():
# Create main workspace layout
self.workspace = GUI.Grid.new()
.addPanel("Data View", position: [0, 0])
.addPanel("Statistics", position: [0, 1])
.addPanel("Visualization", position: [1, 0:2])
Section 5: Data Processing and Analysis Workflows
# DataWorkflows.sona
class DataWorkflows:
def processDataset(dataset: DataFrames) -> AnalysisResult:
# Data cleaning and preprocessing
cleanData = dataset
.removeNulls()
.normalizeColumns()
.detectOutliers()
# Feature engineering
features = cleanData
.createFeatures()
.selectBestFeatures(method: 'correlation')
# Perform analysis
analysis = StatisticalAnalysis.new()
results = analysis.computeBasicStats(features)
# Generate visualizations
viz = DataVisualization.new()
plots = {
'distribution': viz.createPlot(features, 'histogram'),
'correlation': viz.createPlot(features, 'scatter')
}
return AnalysisResult.new(results, plots)
Hands-On Exercises
- Basic Data Analysis
- Load a sample dataset
- Calculate basic statistical measures
- Create a visualization of the data distribution
# Exercise 1: Basic Data Analysis
def basicAnalysis():
# Initialize DataInsight Pro
tool = DataInsightPro.new()
# Load sample dataset
data = tool.loadData("sample_data.csv")
# Compute basic statistics
stats = tool.statistics.computeBasicStats(data)
# Create visualization
plot = tool.visualizer.createPlot(data, 'histogram')
# Display results
print("Basic Statistics:")
print(stats)
plot.show()
- Advanced Analysis Workflow
- Implement a complete analysis pipeline
- Handle data preprocessing
- Generate multiple visualizations
- Export analysis results
# Exercise 2: Advanced Analysis Workflow
def advancedAnalysis():
workflow = DataWorkflows.new()
# Load and process dataset
dataset = DataFrames.loadCSV("complex_dataset.csv")
results = workflow.processDataset(dataset)
# Generate comprehensive report
report = AnalysisReport.new()
.addStatistics(results.statistics)
.addVisualizations(results.plots)
.addInsights(results.insights)
# Export results
report.exportPDF("analysis_report.pdf")
Best Practices and Professional Tips
-
Data Quality Assurance
- Always validate input data
- Implement robust error handling
- Document data transformations
-
Performance Optimization
- Use efficient data structures
- Implement lazy loading for large datasets
- Optimize memory usage in visualizations
-
Code Organization
- Follow clean architecture principles
- Implement proper separation of concerns
- Use meaningful naming conventions
-
Testing and Validation
- Write unit tests for critical functions
- Validate statistical results
- Test edge cases in data processing
Executive Function Support
-
Task Breakdown
- Clear step-by-step implementation guide
- Modular code structure
- Visual progress indicators
-
Memory Aids
- Code templates for common operations
- Quick reference for statistical functions
- Visual representation of data structures
-
Focus Support
- Clearly labeled code sections
- Consistent formatting
- Progressive complexity in exercises
Next Steps and Resources
-
Advanced Topics
- Machine Learning Integration
- Real-time Data Analysis
- Custom Visualization Creation
-
Additional Resources
- Statistical Analysis Documentation
- Data Visualization Gallery
- Performance Optimization Guide
-
Practice Projects
- Market Data Analyzer
- Scientific Data Processor
- Social Media Trend Analyzer
This chapter has provided a comprehensive guide to building a professional data analysis tool using Sona. The project demonstrates advanced concepts while maintaining accessibility through clear structure and support features. In the next chapter, we'll explore building a desktop application with a focus on user experience and distribution.