environments tensorflow 2.16 cuda11 - Azure/azureml-assets GitHub Wiki
An environment for deep learning with Tensorflow containing the Azure ML SDK and additional python packages.
Version: 21
Tensorflow : 2.16
GPU : Cuda11
OS : Ubuntu20.04
Training
Preview
Python : 3.9
View in Studio: https://ml.azure.com/registries/azureml/environments/tensorflow-2.16-cuda11/version/21
Docker image: mcr.microsoft.com/azureml/curated/tensorflow-2.16-cuda11:21
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
FROM mcr.microsoft.com/azureml/o16n-base/python-assets:20240327.v1 AS inferencing-assets
# Tag: 12.3.2-cudnn9-devel-ubuntu20.04
# Env: CUDA_VERSION=12.3.2
# Env: NCCL_VERSION=2.12.7-1
# Env: NV_CUDNN_VERSION=9
# DisableDockerDetector "Preferred to use nvidia registry over MCR mirror"
FROM nvcr.io/nvidia/cuda:12.3.2-cudnn9-devel-ubuntu20.04
USER root:root
ARG IMAGE_NAME=None
ARG BUILD_NUMBER=None
ENV com.nvidia.cuda.version $CUDA_VERSION
ENV com.nvidia.volumes.needed nvidia_driver
ENV LANG=C.UTF-8 LC_ALL=C.UTF-8
ENV DEBIAN_FRONTEND noninteractive
ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64
ENV NCCL_DEBUG=INFO
ENV HOROVOD_GPU_ALLREDUCE=NCCL
# Install Common Dependencies
RUN apt-get update && \
apt-get install -y --no-install-recommends \
# SSH and RDMA
#added openssl - 1.1.1 package to mitigate vulnerabilites after cuda upgdrade, will remove this package
libuuid1 \
libblkid1 \
util-linux \
fdisk \
libfdisk1 \
mount \
libmount1 \
libsmartcols1 \
login \
passwd \
libldap-common \
libldap-2.4-2 \
openssl - 1.1.1 \
procps \
libprocps8 \
libmlx4-1 \
libmlx5-1 \
librdmacm1 \
libibverbs1 \
libmthca1 \
libdapl2 \
libgnutls30 \
libtiff5 \
dapl2-utils \
openssh-client \
openssh-server \
redis \
iproute2 && \
# rdma-core dependencies
apt-get install -y \
udev \
libudev-dev \
libnl-3-dev \
libnl-route-3-dev \
gcc \
ninja-build \
pkg-config \
valgrind \
cython3 \
python3-docutils \
pandoc \
dh-python \
python3-dev && \
# Others
apt-get install -y \
build-essential \
bzip2 \
libbz2-1.0 \
systemd \
curl \
git \
wget \
cpio \
pciutils \
libnuma-dev \
ibutils \
ibverbs-utils \
rdmacm-utils \
infiniband-diags \
perftest \
librdmacm-dev \
libibverbs-dev \
libsm6 \
libxext6 \
libssl1.1 \
libxrender-dev \
libglib2.0-0 \
dh-make \
libc-bin \
libx11-dev \
libgcrypt20 \
binutils-multiarch \
nginx \
e2fsprogs \
e2fsck-static \
fuse2fs \
logsave \
libss2 \
libcom-err2 \
gnupg \
gnupg2 \
gpg \
libdpkg-perl \
dpkg \
libpcre3 \
libpcre2-8-0 \
sqlite3 \
uidmap \
libkrb5-26-heimdal \
libhcrypto4-heimdal \
libheimntlm0-heimdal \
libheimbase1-heimdal \
libasn1-8-heimdal \
libgssapi3-heimdal \
libhx509-5-heimdal \
libroken18-heimdal \
libwind0-heimdal \
libksba8 \
libpam-modules \
libpam-modules-bin \
libpam0g \
libpam-runtime \
tar \
ncurses-bin \
ncurses-base \
libncursesw5 \
libctf-nobfd0 \
perl \
fuse && \
apt-get clean -y && \
rm -rf /var/lib/apt/lists/*
# Update to latest redis
RUN apt-get update && apt-get install -y lsb-release && \
curl -fsSL https://packages.redis.io/gpg | gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg && \
echo "deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main" | tee /etc/apt/sources.list.d/redis.list && \
apt-get update && apt-get install -y redis
# Inference
# Copy logging utilities, nginx and rsyslog configuration files, IOT server binary, etc.
COPY --from=inferencing-assets /artifacts /var/
RUN /var/requirements/install_system_requirements.sh && \
cp /var/configuration/rsyslog.conf /etc/rsyslog.conf && \
cp /var/configuration/nginx.conf /etc/nginx/sites-available/app && \
ln -s /etc/nginx/sites-available/app /etc/nginx/sites-enabled/app && \
rm -f /etc/nginx/sites-enabled/default
ENV SVDIR=/var/runit
ENV WORKER_TIMEOUT=300
EXPOSE 5001 8883 8888
# Stores image version information and log it while running inferencing server for better Debuggability
RUN if [ "$BUILD_NUMBER" != "None" ] && [ "$IMAGE_NAME" != "None" ]; then echo "${IMAGE_NAME}, Materializaton Build:${BUILD_NUMBER}" > /IMAGE_INFORMATION ; fi
# Conda Environment
ENV MINICONDA_VERSION py310_23.10.0-1
ENV PATH /opt/miniconda/bin:$PATH
RUN wget -qO /tmp/miniconda.sh https://repo.anaconda.com/miniconda/Miniconda3-${MINICONDA_VERSION}-Linux-x86_64.sh && \
bash /tmp/miniconda.sh -bf -p /opt/miniconda && \
conda update --all -c conda-forge -y && \
conda clean -ay && \
rm -rf /opt/miniconda/pkgs && \
rm /tmp/miniconda.sh && \
find / -type d -name __pycache__ | xargs rm -rf
# Open-MPI-UCX installation
RUN mkdir /tmp/ucx && \
cd /tmp/ucx && \
wget -q https://github.com/openucx/ucx/releases/download/v1.9.0/ucx-1.9.0.tar.gz && \
tar zxf ucx-1.9.0.tar.gz && \
cd ucx-1.9.0 && \
./configure --prefix=/usr/local --enable-optimizations --disable-assertions --disable-params-check --enable-mt && \
make -j $(nproc --all) && \
make install && \
rm -rf /tmp/ucx
# Open-MPI installation
ENV OPENMPI_VERSION 4.1.0
RUN mkdir /tmp/openmpi && \
cd /tmp/openmpi && \
wget https://download.open-mpi.org/release/open-mpi/v4.1/openmpi-${OPENMPI_VERSION}.tar.gz && \
tar zxf openmpi-${OPENMPI_VERSION}.tar.gz && \
cd openmpi-${OPENMPI_VERSION} && \
./configure --with-ucx=/usr/local/ --enable-mca-no-build=btl-uct --enable-orterun-prefix-by-default && \
make -j $(nproc) all && \
make install && \
ldconfig && \
rm -rf /tmp/openmpi
# Msodbcsql17 installation
RUN curl https://packages.microsoft.com/keys/microsoft.asc | apt-key add - && \
curl https://packages.microsoft.com/config/ubuntu/20.04/prod.list > /etc/apt/sources.list.d/mssql-release.list && \
apt-get update && \
ACCEPT_EULA=Y apt-get install -y msodbcsql17 unixodbc-dev
#Cmake Installation
RUN apt-get update && \
apt-get install -y cmake
# rdma-core v30.0 for Mlnx_ofed_5_1_2 as user space driver
RUN mkdir /tmp/rdma-core && \
cd /tmp/rdma-core && \
git clone --branch v30.0 https://github.com/linux-rdma/rdma-core && \
cd /tmp/rdma-core/rdma-core && \
debian/rules binary && \
dpkg -i ../*.deb && \
rm -rf /tmp/rdma-core
#Install latest version of nccl-rdma-sharp-plugins
RUN cd /tmp && \
mkdir -p /usr/local/nccl-rdma-sharp-plugins && \
apt install -y dh-make zlib1g-dev && \
git clone -b v2.1.0 https://github.com/Mellanox/nccl-rdma-sharp-plugins.git && \
cd nccl-rdma-sharp-plugins && \
./autogen.sh && \
./configure --prefix=/usr/local/nccl-rdma-sharp-plugins --with-cuda=/usr/local/cuda --without-ucx && \
make && \
make install
# set env var to find nccl rdma plugins inside this container
ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/nccl-rdma-sharp-plugins/lib
WORKDIR /
ENV CONDA_PREFIX=/azureml-envs/tensorflow-2.16-cuda11
ENV CONDA_DEFAULT_ENV=$CONDA_PREFIX
ENV PATH=$CONDA_PREFIX/bin:$PATH
# Enable debug
RUN apt-get update
RUN apt-get install -y openssh-server openssh-client
# Create conda environment
COPY conda_dependencies.yaml .
RUN conda env create -p $CONDA_PREFIX -f conda_dependencies.yaml -q && \
rm conda_dependencies.yaml && \
conda run -p $CONDA_PREFIX pip cache purge && \
conda clean -a -y
RUN conda run -p $CONDA_PREFIX
RUN HOROVOD_WITH_TENSORFLOW=1 pip install horovod[tensorflow]
# This is needed for mpi to locate libpython
ENV LD_LIBRARY_PATH=$CONDA_PREFIX/lib:$LD_LIBRARY_PATH
ENV TF_USE_LEGACY_KERAS=1