environments responsibleai tabular - Azure/azureml-assets GitHub Wiki

responsibleai-tabular

Overview

AzureML Responsible AI environment.

Version: 11

Tags

OS : Ubuntu20.04 Training Preview

View in Studio: https://ml.azure.com/registries/azureml/environments/responsibleai-tabular/version/11

Docker image: mcr.microsoft.com/azureml/curated/responsibleai-tabular:11

Docker build context

Dockerfile

FROM mcr.microsoft.com/azureml/openmpi4.1.0-ubuntu20.04:20241215.v1

ENV AZUREML_CONDA_ENVIRONMENT_PATH /azureml-envs/responsibleai-tabular

# Install wkhtmltopdf for pdf rendering from html
RUN apt-get -y update && apt-get -y install wkhtmltopdf

# Prepend path to AzureML conda environment
ENV PATH $AZUREML_CONDA_ENVIRONMENT_PATH/bin:$PATH

# Create conda environment
COPY conda_dependencies.yaml .
RUN conda env create -p $AZUREML_CONDA_ENVIRONMENT_PATH -f conda_dependencies.yaml -q && \
    rm conda_dependencies.yaml && \
    conda run -p $AZUREML_CONDA_ENVIRONMENT_PATH pip cache purge && \
    conda clean -a -y

RUN conda list
# Conda install and pip install could happen side by side. Remove crypytography with vulnerability from conda
RUN conda remove cryptography

RUN pip install --pre 'azure-ai-ml' 'azure-storage-blob<=12.13.0' 'numpy<1.24.0'

# no-deps install for domonic due to unresolvable dependencies requirment on urllib3 and requests.
# score card rendering is using domonic only for the html elements composer which does not involve requests or urllib3
RUN pip install --no-deps 'charset-normalizer==2.0.12' \
                          'cssselect==1.1.0' \
                          'elementpath==2.5.0' \
                          'html5lib==1.1' \
                          'webencodings==0.5.1' \
                          'domonic==0.9.10'

# Install azureml packages
RUN pip install 'azureml-dataset-runtime==1.59.0' \
                'azureml-core==1.59.0' \
                'azureml-mlflow==1.59.0.post1' \
                'azureml-telemetry==1.59.0' \
                'azureml-rai-utils==0.0.6'

# azureml-dataset-runtime[fuse] upper bound for pyarrow is 11.0.0
# so we install pyarrow in extra step to avoid conflict
RUN pip install 'pyarrow>=14.0.1'

# To resolve vulnerability issue regarding crytography
RUN pip install 'cryptography>=43.0.1'

# TODO: remove rai-core-flask pin with next raiwidgets release
RUN pip install 'rai-core-flask==0.7.6'

# To resolve vulnerability issue
RUN pip install 'gunicorn>=22.0.0'
RUN pip install 'Werkzeug>=3.0.3'
RUN pip install 'tqdm>=4.66.3'

RUN pip freeze

# This is needed for mpi to locate libpython
ENV LD_LIBRARY_PATH $AZUREML_CONDA_ENVIRONMENT_PATH/lib:$LD_LIBRARY_PATH
⚠️ **GitHub.com Fallback** ⚠️