environments mlflow py39 inference - Azure/azureml-assets GitHub Wiki
AzureML MLflow/Ubuntu 20.04/Python 3.9 cpu environment.
Version: 3
OS : Ubuntu20.04
Inferencing
Preview
View in Studio: https://ml.azure.com/registries/azureml/environments/mlflow-py39-inference/version/3
Docker image: mcr.microsoft.com/azureml/curated/mlflow-py39-inference:3
FROM mcr.microsoft.com/azureml/inference-base-2004:20241111.v1
WORKDIR /
ENV AZUREML_CONDA_ENVIRONMENT_PATH=/azureml-envs/mlflow
ENV AZUREML_CONDA_DEFAULT_ENVIRONMENT=$AZUREML_CONDA_ENVIRONMENT_PATH
# Prepend path to AzureML conda environment
ENV PATH $AZUREML_CONDA_ENVIRONMENT_PATH/bin:$PATH
ENV LD_LIBRARY_PATH $AZUREML_CONDA_ENVIRONMENT_PATH/lib:$LD_LIBRARY_PATH
# Set MLFlow environment variables
ENV AML_APP_ROOT="/var/mlflow_resources"
ENV AZUREML_ENTRY_SCRIPT="mlflow_score_script.py"
USER root
# We'll copy the HF scripts as well to enable better handling for v2 packaging. This will not require changes to the
# packages installed in the image, as the expectation is that these will all be brought along with the model.
COPY mlflow_score_script.py /var/mlflow_resources/mlflow_score_script.py
COPY mlflow_hf_score_cpu.py /var/mlflow_resources/mlflow_hf_score_cpu.py
COPY mlflow_hf_score_gpu.py /var/mlflow_resources/mlflow_hf_score_gpu.py
# Create conda environment
COPY conda_dependencies.yaml .
RUN conda env create -p $AZUREML_CONDA_ENVIRONMENT_PATH -f conda_dependencies.yaml -q && \
rm conda_dependencies.yaml && \
conda run -p $AZUREML_CONDA_ENVIRONMENT_PATH pip cache purge && \
conda clean -a -y
USER dockeruser
CMD [ "runsvdir", "/var/runit" ]