components token_classification_datapreprocess - Azure/azureml-assets GitHub Wiki
Component to preprocess data for token classification task. See docs to learn more.
Version: 0.0.65
View in Studio: https://ml.azure.com/registries/azureml/components/token_classification_datapreprocess/version/0.0.65
task arguments
sample input
{tokens_column
: [ "EU", "rejects", "German", "call", "to", "boycott", "British", "lamb", "." ], ner_tags_column
: '["B-ORG", "O", "B-MISC", "O", "O", "O", "B-MISC", "O", "O"]'}
For the above dataset pattern, token_key
should be set as tokens_column and tag_key
as ner_tags_column
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
token_key | Key for tokens in each example line | string | False | ||
tag_key | Key for tags in each example line | string | False | ||
batch_size | Number of examples to batch before calling the tokenization function | integer | 1000 | True |
Tokenization params pad_to_max_length: type: string enum: - "true" - "false" default: "true" optional: true description: If set to True, the returned sequences will be padded according to the model's padding side and padding index, up to their max_seq_length
. If no max_seq_length
is specified, the padding is done up to the model's max length.
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
max_seq_length | Default is -1 which means the padding is done up to the model's max length. Else will be padded to max_seq_length . |
integer | -1 | True |
Data inputs Please note that either train_file_path
or train_mltable_path
needs to be passed. In case both are passed, mltable path
will take precedence. The validation and test paths are optional and an automatic split from train data happens if they are not passed. If both validation and test files are missing, 10% of train data will be assigned to each of them and the remaining 80% will be used for training If anyone of the file is missing, 20% of the train data will be assigned to it and the remaining 80% will be used for training
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
train_file_path | Path to the registered training data asset. The supported data formats are jsonl , json , csv , tsv and parquet . |
uri_file | True | ||
validation_file_path | Path to the registered validation data asset. The supported data formats are jsonl , json , csv , tsv and parquet . |
uri_file | True | ||
test_file_path | Path to the registered test data asset. The supported data formats are jsonl , json , csv , tsv and parquet . |
uri_file | True | ||
train_mltable_path | Path to the registered training data asset in mltable format. |
mltable | True | ||
validation_mltable_path | Path to the registered validation data asset in mltable format. |
mltable | True | ||
test_mltable_path | Path to the registered test data asset in mltable format. |
mltable | True |
Dataset parameters
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
model_selector_output | output folder of model selector containing model metadata like config, checkpoints, tokenizer config | uri_folder | False |
Name | Description | Type |
---|---|---|
output_dir | The folder contains the tokenized output of the train, validation and test data along with the tokenizer files used to tokenize the data | uri_folder |
azureml://registries/azureml/environments/acft-hf-nlp-gpu/versions/80