components model_evaluation_pipeline - Azure/azureml-assets GitHub Wiki
Pipeline component for model evaluation for supported tasks. \ Generates predictions on a given model, followed by computing model performance metrics to score the model quality for supported tasks.
Version: 0.0.33
type : evaluation
sub_type : subgraph
View in Studio: https://ml.azure.com/registries/azureml/components/model_evaluation_pipeline/version/0.0.33
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
compute_name | string | serverless | |||
instance_type | string | STANDARD_NC24S_V3 |
model prediction
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
task | Task type | string | tabular-classification | ['tabular-classification', 'tabular-classification-multilabel', 'tabular-regression', 'text-classification', 'text-classification-multilabel', 'text-named-entity-recognition', 'text-summarization', 'question-answering', 'text-translation', 'text-generation', 'fill-mask', 'image-classification', 'image-classification-multilabel', 'chat-completion', 'image-object-detection', 'image-instance-segmentation'] | |
test_data | Test Data | uri_folder | False | ||
mlflow_model | Mlflow Model (could be a registered model or part of another pipeline | mlflow_model | False | ||
label_column_name | Label column name in provided test dataset (Ex: label) | string | True | ||
input_column_names | Input column names in provided test dataset (Ex : column1). Add comma delimited values in case of multiple input columns (Ex : column1,column2) | string | True | ||
device | string | auto | False | ['auto', 'cpu', 'gpu'] | |
batch_size | integer | True |
compute metrics
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
evaluation_config | Additional parameters required for evaluation. See How to create a config here | uri_file | True | ||
evaluation_config_params | JSON Serialized string of evaluation_config | string | True | ||
openai_config_params | Required OpenAI Params for calculating GPT Based metrics for QnA task | string | True |
Name | Description | Type |
---|---|---|
evaluation_result | Output dir to save the evaluation result | uri_folder |