components deploy_model - Azure/azureml-assets GitHub Wiki
Deploy a model to a workspace. The component works on compute with MSI attached.
Version: 0.0.11
Preview
Internal
View in Studio: https://ml.azure.com/registries/azureml/components/deploy_model/version/0.0.11
Output of registering component
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
registration_details_folder | Folder containing model registration details in a JSON file named model_registration_details.json | uri_folder | True | ||
model_id | Asset ID of the model registered in workspace/registry. Registry - azureml://registries//models//versions/ Workspace - azureml:: | string | True | ||
inference_payload | JSON payload which would be used to validate deployment | uri_file | True | ||
endpoint_name | Name of the endpoint | string | True | ||
deployment_name | Name of the deployment | string | default | True | |
instance_type | Compute instance type to deploy model. Make sure that instance type is available and have enough quota available. | string | Standard_NC24s_v3 | True | ['Standard_DS1_v2', 'Standard_DS2_v2', 'Standard_DS3_v2', 'Standard_DS4_v2', 'Standard_DS5_v2', 'Standard_F2s_v2', 'Standard_F4s_v2', 'Standard_F8s_v2', 'Standard_F16s_v2', 'Standard_F32s_v2', 'Standard_F48s_v2', 'Standard_F64s_v2', 'Standard_F72s_v2', 'Standard_FX24mds', 'Standard_FX36mds', 'Standard_FX48mds', 'Standard_E2s_v3', 'Standard_E4s_v3', 'Standard_E8s_v3', 'Standard_E16s_v3', 'Standard_E32s_v3', 'Standard_E48s_v3', 'Standard_E64s_v3', 'Standard_NC4as_T4_v3', 'Standard_NC6s_v2', 'Standard_NC6s_v3', 'Standard_NC8as_T4_v3', 'Standard_NC12s_v2', 'Standard_NC12s_v3', 'Standard_NC16as_T4_v3', 'Standard_NC24s_v2', 'Standard_NC24s_v3', 'Standard_NC24rs_v3', 'Standard_NC64as_T4_v3', 'Standard_ND40rs_v2', 'Standard_ND96asr_v4', 'Standard_ND96amsr_A100_v4'] |
instance_count | Number of instances you want to use for deployment. Make sure instance type have enough quota available. | integer | 1 | True | |
max_concurrent_requests_per_instance | Maximum concurrent requests to be handled per instance | integer | 1 | True | |
request_timeout_ms | Request timeout in ms. Max limit is 90000. | integer | 60000 | True | |
max_queue_wait_ms | Maximum queue wait time of a request in ms | integer | 60000 | True | |
failure_threshold_readiness_probe | The number of times system will try after failing the readiness probe | integer | 10 | True | |
success_threshold_readiness_probe | The minimum consecutive successes for the readiness probe to be considered successful after having failed | integer | 1 | True | |
timeout_readiness_probe | The number of seconds after which the readiness probe times out | integer | 10 | True | |
period_readiness_probe | How often (in seconds) to perform the readiness probe | integer | 10 | True | |
initial_delay_readiness_probe | The number of seconds after the container has started before the readiness probe is initiated | integer | 10 | True | |
failure_threshold_liveness_probe | The number of times system will try after failing the liveness probe | integer | 30 | True | |
timeout_liveness_probe | The number of seconds after which the liveness probe times out | integer | 10 | True | |
period_liveness_probe | How often (in seconds) to perform the liveness probe | integer | 10 | True | |
initial_delay_liveness_probe | The number of seconds after the container has started before the liveness probe is initiated | integer | 10 | True | |
egress_public_network_access | Setting it to disabled secures the deployment by restricting communication between the deployment and the Azure resources used by it | string | enabled | True | ['enabled', 'disabled'] |
Name | Description | Type |
---|---|---|
model_deployment_details | Json file to which deployment details will be written | uri_file |
azureml://registries/azureml/environments/python-sdk-v2/versions/19