components deploy_model - Azure/azureml-assets GitHub Wiki

Deploy model

deploy_model

Overview

Deploy a model to a workspace. The component works on compute with MSI attached.

Version: 0.0.11

Tags

Preview Internal

View in Studio: https://ml.azure.com/registries/azureml/components/deploy_model/version/0.0.11

Inputs

Output of registering component

Name Description Type Default Optional Enum
registration_details_folder Folder containing model registration details in a JSON file named model_registration_details.json uri_folder True
model_id Asset ID of the model registered in workspace/registry. Registry - azureml://registries//models//versions/ Workspace - azureml:: string True
inference_payload JSON payload which would be used to validate deployment uri_file True
endpoint_name Name of the endpoint string True
deployment_name Name of the deployment string default True
instance_type Compute instance type to deploy model. Make sure that instance type is available and have enough quota available. string Standard_NC24s_v3 True ['Standard_DS1_v2', 'Standard_DS2_v2', 'Standard_DS3_v2', 'Standard_DS4_v2', 'Standard_DS5_v2', 'Standard_F2s_v2', 'Standard_F4s_v2', 'Standard_F8s_v2', 'Standard_F16s_v2', 'Standard_F32s_v2', 'Standard_F48s_v2', 'Standard_F64s_v2', 'Standard_F72s_v2', 'Standard_FX24mds', 'Standard_FX36mds', 'Standard_FX48mds', 'Standard_E2s_v3', 'Standard_E4s_v3', 'Standard_E8s_v3', 'Standard_E16s_v3', 'Standard_E32s_v3', 'Standard_E48s_v3', 'Standard_E64s_v3', 'Standard_NC4as_T4_v3', 'Standard_NC6s_v2', 'Standard_NC6s_v3', 'Standard_NC8as_T4_v3', 'Standard_NC12s_v2', 'Standard_NC12s_v3', 'Standard_NC16as_T4_v3', 'Standard_NC24s_v2', 'Standard_NC24s_v3', 'Standard_NC24rs_v3', 'Standard_NC64as_T4_v3', 'Standard_ND40rs_v2', 'Standard_ND96asr_v4', 'Standard_ND96amsr_A100_v4']
instance_count Number of instances you want to use for deployment. Make sure instance type have enough quota available. integer 1 True
max_concurrent_requests_per_instance Maximum concurrent requests to be handled per instance integer 1 True
request_timeout_ms Request timeout in ms. Max limit is 90000. integer 60000 True
max_queue_wait_ms Maximum queue wait time of a request in ms integer 60000 True
failure_threshold_readiness_probe The number of times system will try after failing the readiness probe integer 10 True
success_threshold_readiness_probe The minimum consecutive successes for the readiness probe to be considered successful after having failed integer 1 True
timeout_readiness_probe The number of seconds after which the readiness probe times out integer 10 True
period_readiness_probe How often (in seconds) to perform the readiness probe integer 10 True
initial_delay_readiness_probe The number of seconds after the container has started before the readiness probe is initiated integer 10 True
failure_threshold_liveness_probe The number of times system will try after failing the liveness probe integer 30 True
timeout_liveness_probe The number of seconds after which the liveness probe times out integer 10 True
period_liveness_probe How often (in seconds) to perform the liveness probe integer 10 True
initial_delay_liveness_probe The number of seconds after the container has started before the liveness probe is initiated integer 10 True
egress_public_network_access Setting it to disabled secures the deployment by restricting communication between the deployment and the Azure resources used by it string enabled True ['enabled', 'disabled']

Outputs

Name Description Type
model_deployment_details Json file to which deployment details will be written uri_file

Environment

azureml://registries/azureml/environments/python-sdk-v2/versions/19

⚠️ **GitHub.com Fallback** ⚠️