components convert_model_to_mlflow - Azure/azureml-assets GitHub Wiki
Component converts models from supported frameworks to MLflow model packaging format
Version: 0.0.33
Preview
View in Studio: https://ml.azure.com/registries/azureml/components/convert_model_to_mlflow/version/0.0.33
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
model_id | Huggingface model id (https://huggingface.co/<model_id>). A required parameter for Huggingface model framework. Can be provided as input here or in model_download_metadata JSON file. | string | True | ||
model_flavor | Flavor of MLFlow to which the model is converted to. | string | HFTransformersV2 | False | ['HFTransformersV2', 'OSS'] |
vllm_enabled | Enable vllm in the converted model | boolean | False | False | |
model_framework | Framework from which model is imported from. | string | Huggingface | False | ['Huggingface', 'MMLab', 'llava', 'AutoML'] |
task_name | A Hugging face task on which model was trained on. A required parameter for transformers MLflow flavor. Can be provided as input here or in model_download_metadata JSON file. | string | True | ['chat-completion', 'fill-mask', 'token-classification', 'question-answering', 'summarization', 'text-generation', 'text2text-generation', 'text-classification', 'translation', 'image-classification', 'image-classification-multilabel', 'image-object-detection', 'image-instance-segmentation', 'image-to-text', 'text-to-image', 'text-to-image-inpainting', 'image-text-to-text', 'image-to-image', 'zero-shot-image-classification', 'mask-generation', 'video-multi-object-tracking', 'visual-question-answering'] | |
hf_config_args | Provide args that should be used to load Huggingface model config. eg: trust_remote_code=True; | string | True | ||
hf_tokenizer_args | Provide args that should be used to load Huggingface model tokenizer. eg: trust_remote_code=True, device_map=auto, | string | True | ||
hf_model_args | Provide args that should be used to load Huggingface model. eg: trust_remote_code=True, device_map=auto, low_cpu_mem_usage=True | string | True | ||
hf_pipeline_args | Provide pipeline args that should be used while loading the hugging face model. Dont use quotes. If value cannot be eval'ed it will be taken as as string. eg: trust_remote_code=True, device_map=auto | string | True | ||
hf_config_class | AutoConfig class may not be sufficient to load config for some of the models. You can use this parameter to send Config class name as it is | string | True | ||
hf_model_class | AutoModel classes may not be sufficient to load some of the models. You can use this parameter to send Model class name as it is | string | True | ||
hf_tokenizer_class | AutoTokenizer class may not be sufficient to load tokenizer for some of the models. You can use this parameter to send Config class name as it is | string | True | ||
hf_use_experimental_features | Enable experimental features for hugging face MLflow model conversion | boolean | False | True | |
extra_pip_requirements | Extra pip dependencies that MLflow model should capture as part of conversion. This would be used to create environment while loading the model for inference. Pip dependencies expressed as below. Do not use quotes for passing. eg: pkg1==1.0, pkg2, pkg3==1.0 | string | True | ||
inference_base_image | The docker image to use in model inference. This image id is assigned to azureml.base_image key in metadata section of mlmodel file. |
string | True | ||
model_download_metadata | JSON file containing model download details. | uri_file | True | ||
model_path | Path to the model. | uri_folder | False | ||
license_file_path | Path to the license file | uri_file | True |
Name | Description | Type |
---|---|---|
mlflow_model_folder | Output path for the converted MLflow model. | mlflow_model |
azureml://registries/azureml/environments/model-management/versions/34