components batch_deploy_model - Azure/azureml-assets GitHub Wiki

Batch deploy model

batch_deploy_model

Overview

Batch deploy a model to a workspace. The component works on compute with MSI attached.

Version: 0.0.5

Tags

Preview Internal

View in Studio: https://ml.azure.com/registries/azureml/components/batch_deploy_model/version/0.0.5

Inputs

Output of registering component

Name Description Type Default Optional Enum
registration_details_folder Folder containing model registration details in a JSON file named model_registration_details.json uri_folder True
model_id Asset ID of the model registered in workspace/registry. Registry - azureml://registries//models//versions/ Workspace - azureml:: string True
inference_payload_file File containing data used to validate deployment uri_file True
inference_payload_folder Folder containing files used to validate deployment uri_folder True
endpoint_name Name of the endpoint string True
deployment_name Name of the deployment string default True
compute_name Name of the compute cluster to execute the batch scoring jobs on. New compute will be created if the compute cluster is not present. string cpu-cluster True
size Compute instance size to deploy model. Make sure that instance type is available and have enough quota available. string Standard_NC24s_v3 True ['Standard_DS1_v2', 'Standard_DS2_v2', 'Standard_DS3_v2', 'Standard_DS4_v2', 'Standard_DS5_v2', 'Standard_F2s_v2', 'Standard_F4s_v2', 'Standard_F8s_v2', 'Standard_F16s_v2', 'Standard_F32s_v2', 'Standard_F48s_v2', 'Standard_F64s_v2', 'Standard_F72s_v2', 'Standard_FX24mds', 'Standard_FX36mds', 'Standard_FX48mds', 'Standard_E2s_v3', 'Standard_E4s_v3', 'Standard_E8s_v3', 'Standard_E16s_v3', 'Standard_E32s_v3', 'Standard_E48s_v3', 'Standard_E64s_v3', 'Standard_NC4as_T4_v3', 'Standard_NC6s_v2', 'Standard_NC6s_v3', 'Standard_NC8as_T4_v3', 'Standard_NC12s_v2', 'Standard_NC12s_v3', 'Standard_NC16as_T4_v3', 'Standard_NC24s_v2', 'Standard_NC24s_v3', 'Standard_NC24rs_v3', 'Standard_NC64as_T4_v3', 'Standard_ND40rs_v2', 'Standard_ND96asr_v4', 'Standard_ND96amsr_A100_v4']
min_instances Minimum number of instances of the compute cluster to be created. integer 0 True
max_instances Maximum number of instances of the compute cluster to be created. integer 1 True
idle_time_before_scale_down Node Idle Time before scaling down the compute cluster to be created. integer 120 True
output_file_name Name of the batch scoring output file. string predictions.csv True
max_concurrency_per_instance The maximum number of parallel scoring_script runs per instance. integer 1 True
error_threshold The number of file failures that should be ignored. integer -1 True
max_retries The maximum number of retries for a failed or timed-out mini batch. integer 3 True
timeout The timeout in seconds for scoring a single mini batch. integer 500 True
logging_level The log verbosity level. string info True
mini_batch_size The number of files the code_configuration.scoring_script can process in one run() call. integer 10 True
instance_count The number of nodes to use for each batch scoring job. integer 1 True

Outputs

Name Description Type
batch_job_output_folder Folder to which batch job outputs will be saved. uri_folder

Environment

azureml://registries/azureml/environments/python-sdk-v2/versions/19

⚠️ **GitHub.com Fallback** ⚠️