components batch_deploy_model - Azure/azureml-assets GitHub Wiki
Batch deploy a model to a workspace. The component works on compute with MSI attached.
Version: 0.0.5
Preview
Internal
View in Studio: https://ml.azure.com/registries/azureml/components/batch_deploy_model/version/0.0.5
Output of registering component
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
registration_details_folder | Folder containing model registration details in a JSON file named model_registration_details.json | uri_folder | True | ||
model_id | Asset ID of the model registered in workspace/registry. Registry - azureml://registries//models//versions/ Workspace - azureml:: | string | True | ||
inference_payload_file | File containing data used to validate deployment | uri_file | True | ||
inference_payload_folder | Folder containing files used to validate deployment | uri_folder | True | ||
endpoint_name | Name of the endpoint | string | True | ||
deployment_name | Name of the deployment | string | default | True | |
compute_name | Name of the compute cluster to execute the batch scoring jobs on. New compute will be created if the compute cluster is not present. | string | cpu-cluster | True | |
size | Compute instance size to deploy model. Make sure that instance type is available and have enough quota available. | string | Standard_NC24s_v3 | True | ['Standard_DS1_v2', 'Standard_DS2_v2', 'Standard_DS3_v2', 'Standard_DS4_v2', 'Standard_DS5_v2', 'Standard_F2s_v2', 'Standard_F4s_v2', 'Standard_F8s_v2', 'Standard_F16s_v2', 'Standard_F32s_v2', 'Standard_F48s_v2', 'Standard_F64s_v2', 'Standard_F72s_v2', 'Standard_FX24mds', 'Standard_FX36mds', 'Standard_FX48mds', 'Standard_E2s_v3', 'Standard_E4s_v3', 'Standard_E8s_v3', 'Standard_E16s_v3', 'Standard_E32s_v3', 'Standard_E48s_v3', 'Standard_E64s_v3', 'Standard_NC4as_T4_v3', 'Standard_NC6s_v2', 'Standard_NC6s_v3', 'Standard_NC8as_T4_v3', 'Standard_NC12s_v2', 'Standard_NC12s_v3', 'Standard_NC16as_T4_v3', 'Standard_NC24s_v2', 'Standard_NC24s_v3', 'Standard_NC24rs_v3', 'Standard_NC64as_T4_v3', 'Standard_ND40rs_v2', 'Standard_ND96asr_v4', 'Standard_ND96amsr_A100_v4'] |
min_instances | Minimum number of instances of the compute cluster to be created. | integer | 0 | True | |
max_instances | Maximum number of instances of the compute cluster to be created. | integer | 1 | True | |
idle_time_before_scale_down | Node Idle Time before scaling down the compute cluster to be created. | integer | 120 | True | |
output_file_name | Name of the batch scoring output file. | string | predictions.csv | True | |
max_concurrency_per_instance | The maximum number of parallel scoring_script runs per instance. | integer | 1 | True | |
error_threshold | The number of file failures that should be ignored. | integer | -1 | True | |
max_retries | The maximum number of retries for a failed or timed-out mini batch. | integer | 3 | True | |
timeout | The timeout in seconds for scoring a single mini batch. | integer | 500 | True | |
logging_level | The log verbosity level. | string | info | True | |
mini_batch_size | The number of files the code_configuration.scoring_script can process in one run() call. | integer | 10 | True | |
instance_count | The number of nodes to use for each batch scoring job. | integer | 1 | True |
Name | Description | Type |
---|---|---|
batch_job_output_folder | Folder to which batch job outputs will be saved. | uri_folder |
azureml://registries/azureml/environments/python-sdk-v2/versions/19