Korean translation - Atcold/NYU-DLSP20 GitHub Wiki
| File name | Translator | Start date | Publish date | Reviewers |
|---|---|---|---|---|
README.md |
Gio | March 22 | March 23 | atcold |
index.md |
Gio | March 22 | March 23 | atcold |
01.md |
Gio | March 22 | March 23 | atcold |
01-1.md |
Gio | March 23 | March 25 | atcold |
01-2.md |
Gio | March 25 | March 27 | atcold |
01-3.md |
Ryan | March 27 | April 4 | Gio |
lecture01.sbv |
||||
practicum01.sbv |
||||
02.md |
Chanseok | March 24 | March 25 | Gio |
02-1.md |
Chanseok | March 30 | April 1 | Gio |
02-2.md |
SeungHeon | March 27 | April 1 | Chanseok, Gio |
02-3.md |
Yujin | April 4 | April 6 | SeungHeon |
lecture02.sbv |
||||
practicum02.sbv |
||||
03.md |
Jinwoo | March 27 | April 3 | Gio |
03-1.md |
Jinwoo | March 27 | April 3 | Gio |
03-2.md |
Wonseon | March 27 | March 30 | Gio |
03-3.md |
Seok Hoan | March 27 | April 8 | Yujin |
lecture03.sbv |
||||
practicum03.sbv |
||||
04.md |
Choong Hee | March 25 | March 30 | atcold |
04-1.md |
Choong Hee | March 27 | March 30 | atcold |
practicum04.sbv |
||||
05.md |
Ryan | April 3 | April 4 | Yujin |
05-1.md |
Jieun | March 31 | April 6 | Yujin |
05-2.md |
Jieun | April 1 | April 6 | Yujin |
05-3.md |
Choong Hee | March 30 | April 6 | Yujin |
lecture05.sbv |
||||
practicum05.sbv |
||||
06.md |
Yujin | April 17 | April 20 | Gio |
06-1.md |
Yujin | April 17 | April 26 | Gio |
06-2.md |
Junha | April 19 | May 8 | Gio |
06-3.md |
Seok Hoan | May 3 | May 8 | Chanseok |
lecture06.sbv |
||||
practicum06.sbv |
||||
07.md |
Seok Hoan | June 25 | August 5 | Gio |
07-1.md |
Seok Hoan | June 25 | August 5 | Gio |
07-2.md |
Yujin | July 4 | July 17 | Gio |
07-3.md |
Yujin | Sep 5 | October 13 | Gio |
08.md |
Yujin | July 4 | August 5 | Gio |
08-1.md |
Yujin | July 4 | July 28 | Gio |
08-2.md |
Yujin | July 18 | July 28 | Gio |
08-3.md |
Yujin | July 18 | August 9 | Gio |
09.md |
Choong Hee | July 17 | August 31 | Gio |
09-1.md |
Choong Hee | July 18 | August 31 | Gio |
09-2.md |
Choong Hee | July 24 | August 31 | Gio |
09-3.md |
Choong Hee | August 10 | August 31 | Gio |
10.md |
Chanseok | July 17 | August 23 | Gio |
10-1.md |
SeungHeon | August 15 | August 25 | Gio |
10-2.md |
SeungHeon | August 17 | September 3 | Gio |
10-3.md |
SeungHeon | August 26 | September 3 | Gio |
11.md |
Jinwoo | July 18 | August 23 | Gio |
11-1.md |
Jinwoo | August 18 | September 19 | Gio |
11-2.md |
Choong Hee | September 5 | November 25 | Gio |
11-3.md |
Choong Hee | September 5 | November 25 | Gio |
12.md |
Jieun | July 18 | August 23 | Gio |
12-1.md |
Jieun | July 18 | August 23 | Gio |
12-2.md |
Jieun | July 21 | August 23 | Gio |
12-3.md |
Jieun | July 21 | August 23 | Gio |
13.md |
SeungHeon | July 17 | August 23 | atcold |
13-1.md |
Seok Hoan | Aug 17 | September 25 | Gio |
13-2.md |
Seok Hoan | Sep 1 | September 25 | Gio |
13-3.md |
Seok Hoan | Sep 1 | ||
14.md |
Yujin | July 18 | August 9 | Gio |
14-1.md |
Yujin | July 18 | September 19 | Gio |
14-2.md |
Yujin | July 18 | September 19 | Gio |
14-3.md |
Yujin | July 18 | September 29 | Gio |
- ์ค์๋ง์ ๊ทธ๋๋ก ์ฐ๊ณ , ์ ์ฒด ์ฉ์ด๋ ๋ฒ์ญ
CNN -> CNN
Convolutional neural nets -> ํฉ์ฑ๊ณฑ ์ ๊ฒฝ๋ง
- ํ ๋จ์ด์ง๋ง ๋ฒ์ญํ๊ธฐ ์ ๋งคํ ๋จ์ด๋ ์์ญ
Dropout -> ๋๋กญ์์
encoder -> ์ธ์ฝ๋
- ์ค์ ๋จ์ด๋ ์ฒ์์๋ง
<sup>ํ๊ทธ๋ก ๊ฐ์ธ์ ์๋ฌธ์ผ๋ก๋ ํ๊ธฐ
์ญ์ ํbackpropagation๋ ์ค์ํ๋ค. ์ญ์ ํ๊ฐ ๋ฅ๋ฌ๋์ ํต์ฌ์ด๋ค.
- 3ํ ์ด์ ๋ฑ์ฅํ๋ ์ธ๋ฌผ์ ๊ฒฝ์ฐ ์ด๋ฆ์ ์๋ Convention์ ๋ฐ๋ผ ํ๊ธ๋ก ํ๊ธฐ
Frank Rosenblatt์ ๋งํ๋ค.
"์ ์ ๋ฅด์ฟค ๊ต์๋ง ํ๊ธ์ด์ผ!!"
| Term | Targeted Korean |
|---|---|
| activation | ํ์ฑํ |
| activation function | ํ์ฑํ ํจ์ |
| adaline | ์๋ฌ๋ผ์ธ |
| affine transformation | ์ํ ๋ณํ |
| (artificial) neural network | (์ธ๊ณต) ์ ๊ฒฝ๋ง |
| autoencoder | ์คํ ์ธ์ฝ๋ |
| autonomous vehicles | ์์จ์ฃผํ (์ฐจ๋) |
| backpropagation | ์ญ์ ํ |
| batch normalization | ๋ฐฐ์น ์ ๊ทํ |
| belief-propagaation | ์ ๋ขฐ ์ ํ |
| bias | ํธํฅ |
| chain rule | ์ฐ์ ๋ฒ์น |
| computer vision | ์ปดํจํฐ ๋น์ |
| contractive autoencoder | ์์ถํ ์คํ ์ธ์ฝ๋ |
| contrast normalization | ๋๋น ํ์คํ |
| contrastive divergence | ๋์กฐ ๋ฐ์ฐ |
| convolution | ํฉ์ฑ |
| convolutional sparse coding | ํฉ์ฑ๊ณฑ ํฌ์ ์ฝ๋ฉ, ํฉ์ฑ๊ณฑ ์คํ์ค ์ฝ๋ฉ |
| cost function | ๋น์ฉ ํจ์ |
| cybernetic | ์ธ๊ณต๋๋ํ |
| deep-learning | ๋ฅ๋ฌ๋ |
| dropout | ๋๋กญ์์ |
| dynamic time warping | ๋์ ์๊ฐ ์๊ณก |
| embedding | ์๋ฒ ๋ฉ |
| energy-based model | ์๋์ง ๊ธฐ๋ฐ ๋ชจ๋ธ |
| ensemble | ์์๋ธ |
| feature | ํน์ง |
| fire (of neuron) | (๋ด๋ฐ์) ๋ฐํ |
| fully connected layer | ์์ ์ฐ๊ฒฐ ๊ณ์ธต |
| fully connected network | ์์ ์ฐ๊ฒฐ ์ ๊ฒฝ๋ง |
| gradient | ๊ฒฝ์ฌ, ๊ทธ๋๋์ธํธ |
| gradient descent | ๊ฒฝ์ฌ ํ๊ฐ๋ฒ |
| hidden layer | ์๋์ธต |
| hierarchical representation | ๊ณ์ธต์ ํํ |
| image classification | ์ด๋ฏธ์ง ๋ถ๋ฅ |
| image segmentation | ์์ ๋ถํ |
| inference | ์ถ๋ก |
| Jacobian matrix | ์ผ์ฝ๋น์ ํ๋ ฌ |
| Jensen's Inequality | ์์ผ ๋ถ๋ฑ์ |
| Jupyter Notebook | ์ฃผํผํฐ ๋ ธํธ๋ถ |
| label | ๋ ์ด๋ธ |
| lane tracking | ์ฐจ์ ์ถ์ |
| latent space | ์ ์ฌ ๊ณต๊ฐ |
| layer | ๋ ์ด์ด, ์ธต |
| layers | ๊ณ์ธต |
| lecture part A | ์ด๋ก part A |
| logistic regression | ๋ก์ง์คํฑ ํ๊ท |
| loss function | ์์คํจ์ |
| L2 norm | L2 ์ ๊ทํ |
| manifold | ๋งค๋ํด๋, ๋ค์์ฒด |
| Nash equilibrium | ๋ด์ ๊ท ํ |
| natural language understanding | ์์ฐ์ด ์ดํด |
| natural language processing | ์์ฐ์ด ์ฒ๋ฆฌ |
| nearest neighbor | ์ต๊ทผ์ ์ด์ |
| neural ordinary differential equation | ๋ด๋ด ์๋ฏธ๋ถ๋ฐฉ์ ์ |
| non-maximum suppression | ๋น์ต๋๊ฐ ์ต์ |
| norm | ๋ |
| object detection | ๊ฐ์ฒด ํ์ง |
| one-hot | ์-ํซ |
| parameter | ๋งค๊ฐ ๋ณ์, ๋ชจ์ |
| pattern recognition | ํจํด ์ธ์ |
| penalty term | ๋ฒ์น ํญ, ํ๋ํฐ ํญ |
| perceptron | ํผ์ ํธ๋ก |
| pooling | ํ๋ง |
| practicum | ์ค์ต |
| recurrent neural networks | ์ํ ์ ๊ฒฝ๋ง |
| reflection | ๋ฐ์ฌ |
| regularization | ๊ท์ |
| rotation | ๋กํ ์ด์ |
| relative entropy | ์๋ ์ํธ๋กํผ |
| scaling | ์ค์ผ์ผ๋ง |
| self-supervised learning | ์๊ธฐ์ง๋ํ์ต |
| scalar | ์ค์นผ๋ผ |
| semantic segmentation | ์๋งจํฑ ๋ถํ , ์๋ฏธ๋ก ์ ๋ถํ |
| segmentor | ๋ถํ ๊ธฐ |
| shearing | ์ ๋จ, ์ ๋จ |
| softmax, soft (arg)max | ์ํํธ๋งฅ์ค |
| sparse coding | ํฌ์ ์ฝ๋ฉ, ์คํ์ค ์ฝ๋ฉ |
| speech recognition | ์์ฑ ์ธ์ |
| stochastic gradient descent | ํ๋ฅ ์ ๊ฒฝ์ฌ ํ๊ฐ๋ฒ |
| supervised learning | ์ง๋ ํ์ต |
| tensor | ํ ์ |
| translation | ๋ฒ์ญ |
| trajectory | ์ฌ์ |
| unsupervised learning | ๋น์ง๋ ํ์ต |
| visual cortex | ์๊ฐ ํผ์ง |
| weight | ๊ฐ์ค์น |
| weighted sum | ๊ฐ์คํฉ |
| Term | Targeted Korean |
|---|---|
| Alfredo Canziani | ์ํ๋๋ ์บ์ง์๋ |
| Kunihiko Fukishima | ์ฟ ๋ํ์ฝ ํ์ฟ ์๋ง |
| Yann Lecun | ์ ๋ฅด์ฟค |
| Term | Targeted Korean |
|---|---|
| Anaconda | ์๋์ฝ๋ค |
| Miniconda | ๋ฏธ๋์ฝ๋ค |
| PyTorch | ํ์ดํ ์น |
| Python | ํ์ด์ฌ |
| Term | Explanation |
|---|---|
| actor critic | Actor Ctiric ์๊ณ ๋ฆฌ์ฆ |
| CNN | Convolutional Neural Network ํฉ์ฑ๊ณฑ ์ ๊ฒฝ๋ง |
| GAN | generative adversarial networks ์์ฐ์ ์ ๋ ์ ๊ฒฝ๋ง |
| GPU | Graphic Processing Unit ๊ทธ๋ํฝ์นด๋ |
| ReLU | Rectified linear unit |