Install Automatic1111 - Apkawa/stable-diffusion-wiki-awesome GitHub Wiki
Check compatibly version
- a1111 changelog grep torch https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases/
- pytorch version https://github.com/pytorch/pytorch/blob/main/RELEASE.md#release-compatibility-matrix
- check cuda and nvidia driver compatibly https://docs.nvidia.com/deploy/cuda-compatibility/
For 3060 i choosed:
- a1111==1.8.0
- pytorch==2.1.2
- CUDA==11.8
- nvidia==550
Install driver
- If you have previous installation remove it first.
sudo apt-get purge nvidia*
sudo apt remove nvidia-*
sudo rm /etc/apt/sources.list.d/cuda*
sudo apt-get autoremove && sudo apt-get autoclean
sudo rm -rf /usr/local/cuda*
- system update
sudo apt-get update
sudo apt-get upgrade
-
install other import packages
sudo apt-get install g++ freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libglu1-mesa libglu1-mesa-dev
-
first get the PPA repository driver
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt update
- install nvidia driver with dependencies
V=550 sudo apt install libnvidia-common-$V libnvidia-gl-$V nvidia-driver-$V
Install CUDA
Add cuda repository
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-ubuntu2204.pin
sudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/3bf863cc.pub
sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/ /"
sudo apt-get update
Install
export CUDA_VERSION=11.8
sudo apt install cuda-$(echo $CUDA_VERSION|sed 's/\./-/g')
echo "export PATH=/usr/local/cuda-$CUDA_VERSION/bin:\$PATH" >> ~/.bashrc
echo "export LD_LIBRARY_PATH=/usr/local/cuda-$CUDA_VERSION/lib64:\$LD_LIBRARY_PATH" >> ~/.bashrc
source ~/.bashrc
sudo ldconfig
Install cuDNN
Get latest version tarball https://developer.nvidia.com/cudnn-downloads
Or get specific version from https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-x86_64/
I choose 8.9.7.29_cuda11
wget -c https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-x86_64/cudnn-linux-x86_64-8.9.7.29_cuda11-archive.tar.xz -O cudnn.tar.xz
tar -xvf cudnn.tar.xz
cd cudnn-*/
sudo cp -P include/cudnn.h /usr/local/cuda-11.8/include
sudo cp -P lib/libcudnn* /usr/local/cuda-11.8/lib64/
sudo chmod a+r /usr/local/cuda-11.8/lib64/libcudnn*
- Check cuda
nvidia-smi
nvcc -V
https://gist.github.com/Apkawa/2e1cbeced22135b2a8bad9d230f4e70c
Install A1111
Pull source code
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui
cd stable-diffusion-webui
git checkout v1.8.0
Prepare venv
-
Init venv
python3 -m venv ./venv
-
Enter venv
source ./venv/bin/activate
-
install 'pip install accelerate`
Install pytorch and xformers
for a1111==1.8.0 support pytorch version 2.1.2
- get specific version from https://pytorch.org/get-started/previous-versions/
pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 xformers --index-url https://download.pytorch.org/whl/cu118
- check installed xformers version
pip show xformers
and get version - enable xformers, add to
webui-user.sh
afterCOMMANDLINE_ARGS=
XFORMERS_PACKAGE='xformers==0.0.23.post1+cu118'
export COMMANDLINE_ARGS="$COMMANDLINE_ARGS --xformers"
FAQ:
Q: nvidia-smi NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver
A: Try reboot. Also, for hybrid video check https://wiki.debian.org/NVIDIA%20Optimus or https://wiki.ubuntu.com/Bumblebee manuals
Q: RuntimeError: "LayerNormKernelImpl" not implemented for 'Half'
A: Edit webui-user.sh
, uncomment and add to COMMANDLINE_ARGS
, like:
export COMMANDLINE_ARGS="--precision full --no-half"
Q: AssertionError: Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check
A: export COMMANDLINE_ARGS="--skip-torch-cuda-test"
Q: Fail for 6Gb Nvidia videocard
A: export COMMANDLINE_ARGS="--medvram"
Q: How to run as server
A: export COMMANDLINE_ARGS="--listen --enable-insecure-extension-access"
Q: Huge memory leaks
A: Install tcmalloc
. for ubuntu - apt install libtcmalloc-minimal4
. See https://github.com/AUTOMATIC1111/stable-diffusion-webui/discussions/6722
Q: ./webui.sh: line 292: 18311 Segmentation fault (core dumped)
after load model
A: Check a1111 supported torch version, pin torch version https://pytorch.org/get-started/previous-versions/
https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Command-Line-Arguments-and-Settings