Higher Order Miller Geometry - Antoinehoff/personal_gkyl_scripts GitHub Wiki
Higher Order Miller Geometry
This page describes higher order corrections to the Miller equilibrium geometry used in gyrokinetic simulations, providing enhanced geometric fidelity for tokamak modeling.
Overview
The higher order Miller geometry extends the standard Miller parametrization by including additional terms that account for more complex flux surface shapes, improving the accuracy of tokamak equilibrium representation.
Geometric Parametrization
Enhanced R and Z Coordinates
The higher order Miller geometry is defined as:
Major radius R(r,θ):
R(r,θ) = R₀ + r cos(θ) +
r(κ^{-1}-1)/(κ^{-1}+1) × [q(r)s(r)+6q_a]/[q_s s(a₀)+6q_a] cos(θ) +
δr²/(4a₀) × [q(r)s(r)+4q_a]/[q_s s(a₀)+4q_a] cos(2θ)
Vertical coordinate Z(r,θ):
Z(r,θ) = r sin(θ) -
r(κ^{-1}-1)/(κ^{-1}+1) × [q(r)s(r)+6q_a]/[q_s s(a₀)+6q_a] sin(θ) -
δr²/(4a₀) × [q(r)s(r)+4q_a]/[q_s s(a₀)+4q_a] sin(2θ)
Parameter Definitions
- R₀: Major radius of magnetic axis
- r: Minor radius coordinate
- θ: Poloidal angle
- κ: Elongation parameter
- δ: Triangularity parameter
- q_a: Safety factor at magnetic axis
- q_s: Safety factor at separatrix
- a₀: Minor radius at outboard midplane
- q(r): Safety factor profile
- s(r): Magnetic shear profile
Safety Factor and Shear Profiles
Quadratic Safety Factor Profile
q(r) = q_a + (q_s - q_a)(r/a_{mid})²
This provides a realistic q-profile that increases quadratically from axis to edge.
Magnetic Shear Profile
s(r) = (r/q(r)) × dq/dr = 2(q_s - q_a)/q(r) × (r/a_{mid})²
The shear quantifies the rate of change of field line pitch with radius.
Geometric Derivatives
Radial Derivatives
∂R/∂r:
∂R/∂r = cos(θ) +
(κ^{-1}-1)/(κ^{-1}+1) × [q'(r)s(r)+q(r)s'(r)]/[q_s s(a₀)+6q_a] cos(θ) +
δr/(2a₀) × [q'(r)s(r)+q(r)s'(r)]/[q_s s(a₀)+4q_a] cos(2θ)
∂Z/∂r:
∂Z/∂r = sin(θ) -
(κ^{-1}-1)/(κ^{-1}+1) × [q'(r)s(r)+q(r)s'(r)]/[q_s s(a₀)+6q_a] sin(θ) -
δr/(2a₀) × [q'(r)s(r)+q(r)s'(r)]/[q_s s(a₀)+4q_a] sin(2θ)
Poloidal Derivatives
∂R/∂θ:
∂R/∂θ = -r sin(θ) -
r(κ^{-1}-1)/(κ^{-1}+1) × [q(r)s(r)+6q_a]/[q_s s(a₀)+6q_a] sin(θ) -
δr²[q(r)s(r)+4q_a]/[2a₀(q_s s(a₀)+4q_a)] sin(2θ)
∂Z/∂θ:
∂Z/∂θ = r cos(θ) -
r(κ^{-1}-1)/(κ^{-1}+1) × [q(r)s(r)+6q_a]/[q_s s(a₀)+6q_a] cos(θ) -
δr²[q(r)s(r)+4q_a]/[2a₀(q_s s(a₀)+4q_a)] cos(2θ)
Navigation
Home | Quantities of Interest | SSFG-TSBC Implementation
Part of the Gkeyll Theory and Analysis documentation