flink笔记 - 9dian/Index GitHub Wiki
ref: https://ci.apache.org/projects/flink/flink-docs-master/docs/flinkdev/building/
mvn clean install -DskipTests -Dfast
创建工程: mvn -e archetype:generate -DarchetypeGroupId=org.apache.flink -DarchetypeArtifactId=flink-quickstart-java -DarchetypeVersion=1.11.1 -DinteractiveMode=false -DarchetypeCatalog=local -Dpackage=ai -Da tifactId=rtflow1 -DgroupId=ai
mvn -e archetype:generate -DarchetypeGroupId=org.apache.flink -DarchetypeArtifactId=flink-quickstart-java -DarchetypeVersion=1.11.1 -DinteractiveMode=false -DarchetypeCatalog=local -Dpackage=ai -Da tifactId=rtflow1 -DgroupId=ai
基于quick start Project, 增加org.myorg.quickstart.Test类。
Java project dir: /home/ubuntu/dev/quickstart/
Java Class文件路径:/home/ubuntu/dev/quickstart/src/main/java/org/myorg/quickstart, org.myorg.quickstart.Test
package org.myorg.quickstart;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
public class Test {
public static void main(String[] args) throws Exception {
final String hostname;
final int port;
try {
ParameterTool params = ParameterTool.fromArgs(args);
port = params.getInt("port");
hostname = params.get("hostname");
} catch (Exception e) {
System.err.println("USAGE: Please run 'Test --hostname <hostname> --port <port>'");
return;
}
// set up the streaming execution environment
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// get data from **stream
DataStreamSource<String> stream = env.socketTextStream(hostname, port);
// aggregation
SingleOutputStreamOperator<Tuple2<String, Integer>> sum = stream.flatMap(new LineSplitter())
.keyBy(0)
.sum(1);
sum.print();
env.execute("Test: WordCount from SocketTextStream");
}
public static final class LineSplitter implements FlatMapFunction<String, Tuple2<String, Integer>> {
public void flatMap(String s, Collector<Tuple2<String, Integer>> collector) {
String[] tokens = s.toLowerCase().split("\\W+");
for (String token: tokens) {
if (token.length() > 0) {
collector.collect(new Tuple2<String, Integer>(token, 1));
}
}
}
}
}
mvn clean package -DskipTests
nc -lk 127.0.0.1 9999
此处输入的内容作为flink应用的输入。
/home/ubuntu/dev/flink-1.12.2/build-target/bin/flink run -c org.myorg.quickstart.Test quickstart-0.1.jar --port 9999 --hostname 127.0.0.1
flink应用运行后,可以在flink UI查看相关信息。
另外在flink的log目录(/home/ubuntu/dev/flink-1.12.2/build-target/log)下的 .out 文件中查看运行信息。
ref: https://ci.apache.org/projects/flink/flink-docs-master/docs/flinkdev/building/
wget https://github.com/apache/flink/archive/release-1.10.1.tar.gz
ls -lhtr
rm release-1.10.1.tar.gz
ls
ls -lhtr
tar xzf flink-release-1.10.1.tar.gz
ls
cd flink-release-1.10.1
ls
~/apache-maven-3.3.9/bin/mvn clean install -DskipTests -Pvendor-repos -Dhadoop.version=2.6.0-cdh5.12.1
screen -ls
screen -r dev
cd /tmp
wget https://repo.hortonworks.com/content/repositories/jetty-hadoop/com/101tec/zkclient/0.11/zkclient-0.11.jar
wget https://repo1.maven.org/maven2/com/101tec/zkclient/0.11/zkclient-0.11.jar
cd
cd flink-release-1.10.1
ls
find . -name pom.xml -exec grep 'zkclient' {} \; -print
vim ./flink-connectors/flink-connector-kafka-base/pom.xml
find . -name pom.xml -exec grep '0.11' {} \; -print
pwd
cd /tmp
ls
~/apache-maven-3.3.9/bin/mvn install:install-file -DgroupId=com.101tec -DartifactId=zkclient -Dversion=0.11 -Dfile=zkclient-0.11.jar -Dpackaging=jar
cd /tmp
wget https://repo.hortonworks.com/content/repositories/jetty-hadoop/com/github/jnr/jnr-posix/3.0.35/jnr-posix-3.0.35.jar
wget https://copernicus.serco.eu/repository/nexus/content/repositories/gael/com/github/jnr/jnr-posix/3.0.35/jnr-posix-3.0.35.jar
~/apache-maven-3.3.9/bin/mvn install:install-file -DgroupId=com.github.jnr -DartifactId=jnr-posix -Dversion=3.0.35 -Dfile=jnr-posix-3.0.35.jar -Dpackaging=jar
cd
du -sch *
cd flink-
cd flink-release-1.10.1
ls
du -sch *
df -h
free -m
top
ls
cd flink-release-1.10.1
ls
cd flink-dist/
ls
cd target/
ls
ls -lhtr
cd flink-
cd flink-1.10.1-bin/
readlink -f flink-1.10.1.tar.bz2
screen -d -r dev
cd flink-release-1.10.1
ls
cp flink-connectors/flink-hadoop-compatibility/target/flink-hadoop-compatibility_2.11-1.10.1.jar /tmp
cp flink-connectors/flink-connector-hive/target/flink-connector-hive_2.11-1.10.1.jar /tmp
cp flink-formats/flink-orc/target/flink-orc_2.11-1.10.1.jar /tmp
find . -name "flink-shaded-hadoop-2-uber*.jar"
cp ./flink-yarn-tests/target/shaded-hadoop/flink-shaded-hadoop-2-uber-2.6.0-cdh5.12.1-9.0.jar /tmp
cd /tmp
ls -lhtr
ls
find flink-release-1.10.1 -name "*link-shaded-hadoop-2-uber-2.6.0*.jar"
cd flink-release-1.10.1
ls
find . -name flink-shaded-hadoop-2-uber-2.6.0-cdh5.12.1-9.0.jar
cd flink-yarn-tests
ls
vim pom.xml
find . -name pom.xml -exec grep 'commons-cli' {} \; -print
find . -name pom.xml -exec grep 'commons' {} \; -print
ls
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-hadoop-compatibility_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
val streamEnv = StreamExecutionEnvironment.getExecutionEnvironment
streamEnv.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
streamEnv.setParallelism(3)
val tableEnvSettings = EnvironmentSettings.newInstance()
.useBlinkPlanner()
.inStreamingMode()
.build()
val tableEnv = StreamTableEnvironment.create(streamEnv, tableEnvSettings)
tableEnv.getConfig.getConfiguration.set(ExecutionCheckpointingOptions.CHECKPOINTING_MODE, CheckpointingMode.EXACTLY_ONCE)
tableEnv.getConfig.getConfiguration.set(ExecutionCheckpointingOptions.CHECKPOINTING_INTERVAL, Duration.ofSeconds(20))
// 注册HiveCatalog
val catalogName = "my_catalog"
val catalog = new HiveCatalog(
catalogName, // catalog name
"default", // default database
"/Users/lmagic/develop", // Hive config (hive-site.xml) directory
"1.1.0" // Hive version
)
tableEnv.registerCatalog(catalogName, catalog)
tableEnv.useCatalog(catalogName)
// 创建Kafka流表
// Kafka topic中存储的是JSON格式的埋点日志,建表时用计算列生成事件时间与水印。1.11版本SQL Kafka Connector的参数相比1.10版本有一定简化。
tableEnv.executeSql("CREATE DATABASE IF NOT EXISTS stream_tmp")
tableEnv.executeSql("DROP TABLE IF EXISTS stream_tmp.analytics_access_log_kafka")
tableEnv.executeSql(
"""
|CREATE TABLE stream_tmp.analytics_access_log_kafka (
| ts BIGINT,
| userId BIGINT,
| eventType STRING,
| fromType STRING,
| columnType STRING,
| siteId BIGINT,
| grouponId BIGINT,
| partnerId BIGINT,
| merchandiseId BIGINT,
| procTime AS PROCTIME(),
| eventTime AS TO_TIMESTAMP(FROM_UNIXTIME(ts / 1000,'yyyy-MM-dd HH:mm:ss')),
| WATERMARK FOR eventTime AS eventTime - INTERVAL '15' SECOND
|) WITH (
| 'connector' = 'kafka',
| 'topic' = 'ods_analytics_access_log',
| 'properties.bootstrap.servers' = 'kafka110:9092,kafka111:9092,kafka112:9092'
| 'properties.group.id' = 'flink_hive_integration_exp_1',
| 'scan.startup.mode' = 'latest-offset',
| 'format' = 'json',
| 'json.fail-on-missing-field' = 'false',
| 'json.ignore-parse-errors' = 'true'
|)
""".stripMargin
)
// 前面已经注册了HiveCatalog,故在Hive中可以观察到创建的Kafka流表的元数据(注意该表并没有事实上的列)。
hive> DESCRIBE FORMATTED stream_tmp.analytics_access_log_kafka;
OK
# col_name data_type comment
# Detailed Table Information
Database: stream_tmp
Owner: null
CreateTime: Wed Jul 15 18:25:09 CST 2020
LastAccessTime: UNKNOWN
Protect Mode: None
Retention: 0
Location: hdfs://sht-bdmq-cls/user/hive/warehouse/stream_tmp.db/analytics_access_log_kafka
Table Type: MANAGED_TABLE
Table Parameters:
flink.connector kafka
flink.format json
flink.json.fail-on-missing-field false
flink.json.ignore-parse-errors true
flink.properties.bootstrap.servers kafka110:9092,kafka111:9092,kafka112:9092
flink.properties.group.id flink_hive_integration_exp_1
flink.scan.startup.mode latest-offset
flink.schema.0.data-type BIGINT
flink.schema.0.name ts
flink.schema.1.data-type BIGINT
flink.schema.1.name userId
flink.schema.10.data-type TIMESTAMP(3)
flink.schema.10.expr TO_TIMESTAMP(FROM_UNIXTIME(`ts` / 1000, 'yyyy-MM-dd HH:mm:ss'))
flink.schema.10.name eventTime
flink.schema.2.data-type VARCHAR(2147483647)
flink.schema.2.name eventType
# 略......
flink.schema.9.data-type TIMESTAMP(3) NOT NULL
flink.schema.9.expr PROCTIME()
flink.schema.9.name procTime
flink.schema.watermark.0.rowtime eventTime
flink.schema.watermark.0.strategy.data-type TIMESTAMP(3)
flink.schema.watermark.0.strategy.expr `eventTime` - INTERVAL '15' SECOND
flink.topic ods_analytics_access_log
is_generic true
transient_lastDdlTime 1594808709
# Storage Information
SerDe Library: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
InputFormat: org.apache.hadoop.mapred.TextInputFormat
OutputFormat: org.apache.hadoop.hive.ql.io.IgnoreKeyTextOutputFormat
Compressed: No
Num Buckets: -1
Bucket Columns: []
Sort Columns: []
Storage Desc Params:
serialization.format 1
Time taken: 1.797 seconds, Fetched: 61 row(s)
创建Hive表
Flink SQL提供了兼容HiveQL风格的DDL,指定SqlDialect.HIVE即可(DML兼容还在开发中)。
为了方便观察结果,以下的表采用了天/小时/分钟的三级分区,实际应用中可以不用这样细的粒度(10分钟甚至1小时的分区可能更合适)。
tableEnv.getConfig.setSqlDialect(SqlDialect.HIVE)
tableEnv.executeSql("CREATE DATABASE IF NOT EXISTS hive_tmp")
tableEnv.executeSql("DROP TABLE IF EXISTS hive_tmp.analytics_access_log_hive")
tableEnv.executeSql(
"""
|CREATE TABLE hive_tmp.analytics_access_log_hive (
| ts BIGINT,
| user_id BIGINT,
| event_type STRING,
| from_type STRING,
| column_type STRING,
| site_id BIGINT,
| groupon_id BIGINT,
| partner_id BIGINT,
| merchandise_id BIGINT
|) PARTITIONED BY (
| ts_date STRING,
| ts_hour STRING,
| ts_minute STRING
|) STORED AS PARQUET
|TBLPROPERTIES (
| 'sink.partition-commit.trigger' = 'partition-time',
| 'sink.partition-commit.delay' = '1 min',
| 'sink.partition-commit.policy.kind' = 'metastore,success-file',
| 'partition.time-extractor.timestamp-pattern' = '$ts_date $ts_hour:$ts_minute:00'
|)
""".stripMargin
)
Hive表的参数复用了SQL FileSystem Connector的相关参数,与分区提交(partition commit)密切相关。仅就上面出现的4个参数简单解释一下。
sink.partition-commit.trigger:触发分区提交的时间特征。默认为processing-time,即处理时间,很显然在有延迟的情况下,可能会造成数据分区错乱。所以这里使用partition-time,即按照分区时间戳(即分区内数据对应的事件时间)来提交。
partition.time-extractor.timestamp-pattern:分区时间戳的抽取格式。需要写成yyyy-MM-dd HH:mm:ss的形式,并用Hive表中相应的分区字段做占位符替换。显然,Hive表的分区字段值来自流表中定义好的事件时间,后面会看到。
sink.partition-commit.delay:触发分区提交的延迟。在时间特征设为partition-time的情况下,当水印时间戳大于分区创建时间加上此延迟时,分区才会真正提交。此值最好与分区粒度相同,例如若Hive表按1小时分区,此参数可设为1 h,若按10分钟分区,可设为10 min。
sink.partition-commit.policy.kind:分区提交策略,可以理解为使分区对下游可见的附加操作。metastore表示更新Hive Metastore中的表元数据,success-file则表示在分区内创建_SUCCESS标记文件。
当然,SQL FileSystem Connector的功能并不限于此,还有很大自定义的空间(如可以自定义分区提交策略以合并小文件等)。具体可参见官方文档。
流式写入Hive
注意将流表中的事件时间转化为Hive的分区。
tableEnv.getConfig.setSqlDialect(SqlDialect.DEFAULT)
tableEnv.executeSql(
"""
|INSERT INTO hive_tmp.analytics_access_log_hive
|SELECT
| ts,userId,eventType,fromType,columnType,siteId,grouponId,partnerId,merchandiseId,
| DATE_FORMAT(eventTime,'yyyy-MM-dd'),
| DATE_FORMAT(eventTime,'HH'),
| DATE_FORMAT(eventTime,'mm')
|FROM stream_tmp.analytics_access_log_kafka
|WHERE merchandiseId > 0
""".stripMargin
)
来观察一下流式Sink的结果吧。
上文设定的checkpoint interval是20秒,可以看到,上图中的数据文件恰好是以20秒的间隔写入的。由于并行度为3,所以每次写入会生成3个文件。分区内所有数据写入完毕后,会同时生成_SUCCESS文件。如果是正在写入的分区,则会看到.inprogress文件。
通过Hive查询一下,确定数据的时间无误。
hive> SELECT from_unixtime(min(cast(ts / 1000 AS BIGINT))),from_unixtime(max(cast(ts / 1000 AS BIGINT)))
> FROM hive_tmp.analytics_access_log_hive
> WHERE ts_date = '2020-07-15' AND ts_hour = '23' AND ts_minute = '23';
OK
2020-07-15 23:23:00 2020-07-15 23:23:59
Time taken: 1.115 seconds, Fetched: 1 row(s)
流式读取Hive
要将Hive表作为流式Source,需要启用dynamic table options,并通过table hints来指定Hive数据流的参数。以下是简单地通过Hive计算商品PV的例子。
tableEnv.getConfig.getConfiguration.setBoolean(TableConfigOptions.TABLE_DYNAMIC_TABLE_OPTIONS_ENABLED, true)
val result = tableEnv.sqlQuery(
"""
|SELECT merchandise_id,count(1) AS pv
|FROM hive_tmp.analytics_access_log_hive
|/*+ OPTIONS(
| 'streaming-source.enable' = 'true',
| 'streaming-source.monitor-interval' = '1 min',
| 'streaming-source.consume-start-offset' = '2020-07-15 23:30:00'
|) */
|WHERE event_type = 'shtOpenGoodsDetail'
|AND ts_date >= '2020-07-15'
|GROUP BY merchandise_id
|ORDER BY pv DESC LIMIT 10
""".stripMargin
)
"/*+ OPTIONS(
'streaming-source.enable' = 'true',
'streaming-source.monitor-interval' = '1 min',
'streaming-source.consume-start-offset' = '2020-07-15 23:30:00'
) */"
result.toRetractStream[Row].print().setParallelism(1)
streamEnv.execute()
三个table hint参数的含义解释如下。
streaming-source.enable:设为true,表示该Hive表可以作为Source。
streaming-source.monitor-interval:感知Hive表新增数据的周期,以上设为1分钟。对于分区表而言,则是监控新分区的生成,以增量读取数据。
streaming-source.consume-start-offset:开始消费的时间戳,同样需要写成yyyy-MM-dd HH:mm:ss的形式。
更加具体的说明仍然可参见官方文档(吐槽一句,这份文档的Chinglish味道真的太重了=。=
最后,由于SQL语句中有ORDER BY和LIMIT逻辑,所以需要调用toRetractStream()方法转化为回撤流,即可输出结果。
The End
Flink 1.11的Hive Streaming功能大大提高了Hive数仓的实时性,对ETL作业非常有利,同时还能够满足流式持续查询的需求,具有一定的灵活性。
分布式快照(Lightweight Asynchronous Snapshot for Distributed Dataflows, Chandy-Lamport algorithm)和两相位提交.
传统方法缺电:目前的方法依赖于周期性的全局快照,发生故障时的数据恢复。这些方法有两个主要缺点。首先,这些方法往往会使整体计算停滞 不前,影响数据的摄入。其次,这些方法都渴望保存所有运行状态变化的记录。这种行为会导致大量的超快照信息,而这些快照信息不是必需的。 快照技术可以让分布式计算节点的同步全部停止,从而获得一致的全局状态。此外,据我们所知,分布式算法的所有当前快照都在整个执行图中>由通道或消息处理,作为快照状态的一部分。通常,这些数据比必要的要大得多。
两相位提交 (Two phase submission) 1.4版本引入,两相位结合source和sink(尤其是kafka0.11+)使得处理语义exactly once成为可能。
flink two-stage commit的实现封装在抽象类org.apache.flink.streaming.api.functions.sink.TwoPhaseCommitSinkFunction,我们只需要实现 beginTransaction、preCommit、commit、abort这四种方法就可以实现“精确一次”的处理语义.
- beginTransaction: 在开始事务之前,我们在目标文件系统的临时目录下创建一个临时文件,然后在处理数据时将数据写入这个文件。
- preCommit: 在预提交阶段,你可以刷新文件,关闭文件,然后你不能再次写入文件。我们还将为属于下一个检查点的任何后续写入启动一个新>事务。
- commit: 在提交阶段,我们会将预先提交的文件原子性地移动到真正的目标目录,这会增加输出数据可见性的延迟. 如果失败了, flink会restart并调用recoverAndCommit。
- abort: 在中止阶段,删除临时文件。